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Abstract—Geometric features of protein surfaces play an
important role in the identification of biomolecular structures,
functions, and interactions. These features have been crucial
in predicting binding sites for protein-ligand or protein-protein
interactions. This paper introduces simplicial complexes and
discrete Morse theory to extract important geometric information
on the protein surface. Using the extracted geometric informa-
tion, we provide possible intermediate conformations around the
protein surface as the ligand travels to the binding site. We
compare the efficiency of our method with the state-of-art-method
in terms of computation time and total complexes needed to
generate the topological structure of the protein surface. We also
show comparable relevance of the binding affinity of our method
in relation to the known native protein binding site.

Index Terms—Protein surface, Simplicial complex, Discrete
Morse theory.

I. INTRODUCTION

Protein-ligand interactions are crucial to a wide range of
biological activities and functions in any organism, including
cell metabolism, signal transduction, muscle contraction, and
immune systems. Many essential cellular processes such as
controlling the function of enzymes, transport, and most
regulatory mechanisms rely on physical interactions between
proteins. Therefore, protein-ligand interactions network analy-
sis is essential to gain comprehensive knowledge on the control
mechanism and organization of a living cell.

Analyzing and extracting useful information from the
molecular surface of proteins is a fundamental problem in
structural biology. These surfaces contain essential biological
information that helps us understand properties such as the
geometrical organization of interacting residues, precise identi-
fication of the borders of each interaction site, energy potential
at interaction sites that allow for strong versus weak binding,
and the locations where artificial molecules (e.g., drugs) can
best bind. Understanding these properties has life-saving bi-
ological implications, including aiding in the development of
therapeutic drugs, vaccines, and point of care technologies.
However, predicting protein-ligand interactions purely from
structure remains an important challenge in structural biology
[1]. The recent study proposed multiple approaches to capture
molecular surface patterns with functional relevance, such as
three-dimensional Zernike descriptors [2], [3] and geometric
invariant fingerprint descriptors [4]. Nevertheless, the scope
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of these approaches is limited since they proposed hand-
crafted descriptors and manually optimized the protein surface
features, making it difficult to determine the right set of
features for a given task.

Seminal work on the application of motion planning al-
gorithms to the study of proteins was published, in [5].
The motion-planning-inspired methods are widely applied in
molecular simulations for the computation of conformational
transitions of proteins [6], the study of the protein folding
process [7]–[9], and the analysis of protein-ligand interactions
[10], [11]. One of the widely used motion planning methods is
a sampling-based motion planning (SBMP) approach [12]. In
this work, we apply an SBMP method to study the dynamics
of ligand binding to an identified binding site.

Contribution: we present a framework that extracts the
geometric features of the protein molecular surfaces via sim-
plicial complexes and discrete Morse theory. We construct
the topological structure, i.e., simplicial complex, around the
protein surface using the Vietoris-Rips complex method. On
the constructed simplicial complex, we apply the variant of the
discrete Morse function defined in our work [13] to identify
critical points on the surface of the protein molecule. The
critical points information used in our algorithm provides
different conformations of the ligand molecule around the
protein surface, which help in planning the feasible trajectory
of the ligand to a protein’s active binding site. We perform ex-
periments for ten different proteins with two ligand molecules,
and our result shows a correlation between the binding affinity
of our results to the known binding site of these ligands. We
also show an improved performance of our method with the
baseline method in [14].

II. RELATED WORK

A. Protein-ligand interaction

Proteins do not function in isolation, and interactions help
reveal important functions and properties. However, the effi-
ciency of these interactions depends on the dynamical and ki-
netic features of any pair. Protein-ligand interactions are most
often analyzed using a theoretical (physics-based) or statistical
(knowledge-based) approach. The complicated interactions of
biological molecules as captured by physics-based models
carry a large overhead of needed processing resources [15].
Geometric features, such as coordinates, distances, angles,



surface areas [16], and curvatures [17] are important de-
scriptors of biological molecules. However, geometric features
often involve too much structural detail and are frequently
computationally intractable for large biological molecules data
sets [18]. Therefore, efficient extraction and processing of
these geometric features still needs to be developed.

B. Geometric curvatures of protein surface

The exploration of the geometric features of a protein
molecular surface enhances the understanding of molecular
morphology and molecular mechanism and allows significant
applications to drug design and protein-ligand interactions.
The work in [14] presented a variational multiscale strategy
for the unified geometric and physical modeling of an aqueous
biomolecular system in the Lagrangian representation.

Another work [19] used the cartesian representation to eval-
uate second-order computational algorithms for six different
3D structure curvature descriptors leading to a good prediction
of protein-ligand binding sites. However, the evaluation metric
of the geometric properties turned out to be expensive and
limited the robustness for use in the analysis of the interaction
of macromolecules, e.g., proteins, membranes, DNAs, and
RNAs.

C. Sampling based motion planners

Motion planning is, generally, formulated using the notion
of configuration space [20]. The configuration space (or con-
formation space) is the set of all possible conformations an
object (a robot or a biomolecule) can take, and the number
of dimensions of this space equals the number of degrees of
freedom of the object (i.e., the number of parameters needed
to describe the pose of the robot or biomolecule). The regions
in the configuration space free of all internal and external
constraints are called Cfree. Sampling-based planners are often
classified into two categories: graph-based methods such as
the Probabilistic Roadmap Method (PRM) [21] and tree-based
methods such as Rapidly-exploring Random Tree (RRT) [22].
These methods have shown several applications in the study
of proteins [9], [23], [24]. Recent work in [11] generated
a topology skeleton tunnel to plan a path for the ligand to
the accessible binding site of protein using a skeleton guided
rapidly-exploring random graph. However, the construction
and analysis of the tunnel become complex as the complexity
of protein increases.

In this work, we present a method to extract the geometric
features of the protein surfaces using the discrete Morse
function. Our algorithm extracts the non-degenerate critical
points of the protein surfaces and provides possible ligand
conformations around them. These features provide maximum
and minimum curvatures information of the protein surface
beneficial in the prediction of geometrically favorable protein-
ligand interaction binding sites.

III. METHODOLOGY

A. Background definitions

Discrete Morse theory, originally defined by Forman [25],
is a discrete analog of the classical smooth Morse theory. We

first define the principal mathematical concepts, i.e., abstract
simplicial complex and Vietoris-Rips complex.

Definition 1: (Abstract Simplicial complex) An abstract
simplicial complex K, i.e., a collection of sets closed under
the subset operation, is a generalization of a graph useful in
representing higher-than-pairwise connectivity relationships.

The elements of the set are called vertices, and the set itself
is a simplex. The vertices refer to ligand conformation in the
conformation space.

Definition 2: (Vietoris-Rips complex) Given a set S of points
in Euclidean space E, the Vietoris-Rips complex R(S) is the
abstract simplicial complex whose k-simplices are the subsets
of k + 1 points in X with diameter that is at most ε.

We perform steps from [26] to generate simplicial com-
plex R(S) to capture the topological structure of the protein
surface, i.e., vertices, edges, triangles. We apply the discrete
Morse function on the same simplicial complex to extract
the critical points information of the surface. The discrete
setting of Morse theory avoids the overhead of differential
geometry, thus, reducing the computation complexity for high
dimensional structures.

In this work, the protein surface is modeled as a rigid object.
S is the set of all ligand conformations present in the simplicial
complex R(S). These conformations are generated at a radial
distance 2% away from the surface to avoid collisions, such
that S ⊆ Cfree. We take % as the diameter of the circum-
scribed circle of the ligand molecule. Considering the above
parameters, we define the discrete Morse function as follows.

Definition 3: Let D be the Euclidean distance function that
measures the distance between the point x ∈ Cfree and the
nearest point y on the protein surface P , that is, D(x) =
miny∈P ‖x− y‖.

Definition 4: Let Γ(y, %) be a density function where % >
0 and y is the point on the protein surface. The function Γ
counts all neighbors close to y in S within distance %.

Definition 5: Let f be a discrete Morse function on R(S)
restricted to the vertices of the Vietoris-Rips complex. One
option was defined in [13]. This is applied in this paper and
formally defined at any point in conformation space by

f(x) = D(x)× Γ(y, %). (1)

Please refer to [13] for our expanded definition and theorems.
Definition 6: (Critical points) The set of critical points is

defined as the set of non-degenerate points on the surface of
protein when the given discrete Morse function f reaches its
extreme values, i.e. local minima or maxima.

Definition 7: (Feasible critical points) This set is defined as
all possible ligand conformations in S at a radial distance of %
from a critical point on the protein surface. In other words, it
is the union of intersections of vertices in S within the metric
balls of radius % centered at some critical point.

B. Extraction of geometric features

Algorithm 1 describes how we construct a simplicial com-
plex around the protein surface by sampling and connecting
ligand conformations in method ConstructComplex. Using the
sampling condition from [26], the algorithm performs topolog-
ical collapse to remove redundant topological information, i.e.,



vertices and edges, and provides a skeleton of the simplicial
complex around the protein surface in line 3, i.e., a surface
mesh. It applies discrete Morse function f to this simplicial
complex to identify the local maxima and minima curvatures
of the protein surface, in line 4. The identified critical points
of the surface are the highest and the lowest peak points on
the surface at which function f reaches its extremum. For
function f , the distance becomes an equalizer, and the density
becomes an essential contributing factor affecting the morse
value density at the surface curvatures.

Algorithm 1 Path planning to protein binding site

Input: P : Protein surface model, R: Planned path to the
binding site, H: set of ligand conformations around the
protein surface.

1: Let R← {φ}.
2: S ← ConstructComplex(P ); / Refer Def. 2
3: TopologicalCollapse(S); / Refer [26]
4: C ← IdentifyCriticalPoints(S); / Refer Def. 5, 6
5: F ← GetFeasiblePoints(S,C); / Refer Def. 7
6: H = S

⋂
F

7: R = Query(H)
8: return {H,R}

The algorithm extracts the feasible critical points at radial
distance % from the identified critical points of the protein sur-
face, in line 5. These conformations are identified at proximity
to the protein surface and are part of a simplicial complex
R(S), refer Def.7. The extracted geometric information map
is used to plan a path for the ligand conformation from start to
the binding site conformation in lines 6-7. The output of our
algorithm is an extracted geometric information map consist-
ing of critical points, feasible critical points, and a pathway
from the start conformation to the binding site conformation.

IV. MODEL TRANSFORMATION

We obtain protein data from the protein data bank (PDB)
[27], [28] and construct their geometric structure using
CHIMERA [29]. Figure 1 shows the graphical representation
of 4JNO protein, its high-dimensional surface model, and the
extracted geometric map.

We consider 10 proteins and 2 ligand bio-molecules to study
and understand the protein surfaces and their geometries. The
high dimensional surface models of proteins are represented
as a stationary rigid body in the conformation space. We
construct a flexible linkage model of the ligand using the
covalent bond length and angle measurement derived from
CHIMERA. Figure 2 shows the backbone structure of the SIA
ligand molecule and our corresponding model. Each covalent
bond is simulated as one link of the robot of length 1.53 Å,
and the part of the C-N bond of the molecule is surrounded
with a sphere of radius 2.7 Å. Similarly, we perform the
transformation for SO4 ligand where the covalent bond length
is 1.47 Å, and the angle between the pair of S-O bonds is
120◦ each, as shown in Figure 3.

The protein studied are listed in Table I and range from
36 to 1708 residues. The proteins selected include three
Plasmodium Falciparum (PF) pathogen proteins, i.e., 1SQ6,

1TQX, and 3NTJ, and one DNA protein (7OXS). PF inflicts
the most damage and is responsible for most malaria-related
deaths. The high mutational capacity coupled with its changing
metabolism makes the development of malaria drug treatments
an evolving problem. These proteins were selected because
they have been identified as potential drug targets from our
previous work [30].

We follow the same steps of transformation for all protein
and ligand bio-molecules to avoid the loss of biological sig-
nificance. We transform the coordinates of the known binding
site provided in the PDB file of each protein into the goal
conformation for our ligand model in the conformation space.
The start and goal positions are highlighted in red and blue
color, respectively, as shown in Figure 4. The caption of each
protein surface model represents the ligand molecule used for
the protein-ligand interaction experiment. Here, protein 4JNO
binds with ligand SIA, and the rest binds with ligand SO4.

V. RESULT ANALYSIS

The experiments were executed on a Dell Optiplex 7040
desktop machine running OpenSUSE operating system, and
the algorithms were implemented in C++ language. All re-
sults were averaged over 5 random trials for geometric map
generation and 5 random trials for roadmap planning time for
each protein.

A. Computing surface complexes

We compare the performance of our method with the
Delaunay-refinement-based method from the TetGen library
due to its relevance to our approach, as seen in [14]. Computa-
tion time and total complexes generated to capture the topolog-
ical structure of the protein surface were recorded. In Figure 5,
we observe that the Delaunay method required a longer time to
generate complexes for all proteins compared to our method.
The numbers of complexes generated by the Delaunay method
for proteins 3NTJ and 5JBE are equivalently highest among
all proteins, but the computation time difference between them
is significant and inconsistent. On the other hand, to maintain
the skeleton structure of the simplicial complex our method
shows a consistent relation between the computation time
and the total generated complexes. The calculation performed
to construct complexes around the surface does not affect
the overall performance resulting in less memory overhead.
Thus, our method is more reliable and faster in capturing the
topological structure of the protein surface by generating fewer
complexes in low computation time than the baseline method.

On the generated surface complex, the work [14] performed
numerical calculations to identify the surface curvatures. In-
stead, our method provides an automated framework for iden-
tifying the minimum and maximum curvatures of the protein
surfaces, i.e., critical points, and generates feasible critical
points around them, as discussed next.

B. Motion planning towards a binding site

Our method generates a geometric information map for all
10 proteins, e.g., shown in Figure 1c. We input the map to
PRM [21] method as an initial graph to solve query from start
conformation to the binding site conformation. We show the



(a) 4JNO protein (b) Surface model (c) Geometric information map

Fig. 1: The figure shows the multiscale surface model of the 4JNO protein and the geometric features (critical points) detected
on the protein surface. The geometric information map provides the point size view of the ligand molecule conformation
around the surface.

(a) Ligand SIA (b) SIA with backbone structure (c) Corresponding robot model

Fig. 2: Robot transformation of SIA ligand. The C-N bond part of the ligand is enclosed by a blue sphere.

(a) Ligand
SO4

(b) Robot
model

Fig. 3: SO4 ligand into robot transformation.

distribution of time taken to construct a simplicial complex,
compute a geometric map, and plan a path to the binding
site. Figure 6a shows the total computation time taken by our
method to capture protein surface topological and geometrical
information, and Figure 6b shows the time taken to plan a
successful path to the goal conformation. We observe that for
large protein structures like 1ZRL, 3NTJ, 4JNO, 5JBE, and
5ZT1, the computation of geometric information is higher than
the complex construction time. On the other hand, the ligand
conformations generated around the identified curvatures of
protein surfaces contribute to the smooth navigation of the
ligand to the goal conformation at a safe distance from the
protein. The path planning time for all proteins is negligible
as the highest planning time recorded was 150 seconds for the
SIA ligand around the 4JNO protein surface.

Figure 7 shows screenshots of the planned path for the
ligand SIA around the 4JNO protein surface to the goal
conformation. The different view angles reflect the motion of
the ligand biomolecule around the protein surface using the
ligand conformation generated by our method. Our method
was able to capture the biological aspect of the protein-ligand
interaction using the geometric information map. We produce
the same results for the remaining nine proteins.

C. Binding affinity of goal conformation
We are interested in analyzing the relevance of our goal con-

formation with known binding sites for the ligand. We validate
the identified ligand conformations for each protein with the
native binding pose using the binding affinity measure. We use
the molar Gibbs free energy ∆G (binding affinity) to determine
the relevance for the binding pose. Gibbs free energy is
a thermodynamic potential that measures the capacity of a
thermodynamic system to do maximum or reversible work at a
constant temperature and pressure (isothermal, isobaric) [31].
The protein-ligand binding occurs only when the change in
Gibbs free energy ∆G of the system is negative, i.e., when
the system reaches an equilibrium state at constant pressure
and temperature. Table I show the ∆G value for the ligand at
goal conformation for all 10 proteins.

Our method provides a closely relevant binding affinity for
our ligand goal conformation compared with the native binding
poses of the ligand for each protein. Our method successfully
captures the geometric features of the protein surfaces and
plans a path for ligand biomolecule to the binding site without
losing its biological significance.

VI. DISCUSSION AND FUTURE WORK

The paper presented an automated framework that extracts
the geometric features, i.e., maximum and minimum curvature,
of the protein surface and provides the possible ligand confor-
mation around the identified curvatures. Our algorithm applies
the discrete Morse function to the constructed simplicial
complex around the protein surface and generates a geometric
information map. The results show that our method captures
the topological structure of the protein surface more efficiently
compared to the baseline method in terms of computation time
and the number of complexes generated. Our results show
a strong correlation between the goal conformation of the
ligand with known binding sites for the studied proteins via



(a) 1SQ6 (SO4) (b) 1TQX (SO4)
(c) 1ZRL (SO4) (d) 3NTJ (SO4) (e) 4JNO (SIA)

(f) 5JBE (SO4) (g) 5ZT1 (SO4) (h) 6E02 (SO4) (i) 6JMI (SO4) (j) 7OXS (SO4)

Fig. 4: Protein surface models studied

(a) Total computation time (in seconds) (b) Total complexes generated

Fig. 5: Qualitative performance analysis of generated surface complex.

(a) Total time taken to construct the simplicial complex and
extract geometric features of the protein surface.

(b) Path planning time range shown over mean and standard
deviation values of all trials.

Fig. 6: Quantitative time analysis of our algorithm.

TABLE I: Binding Affinity (Kcal/mol) for the ligand at goal conformation compared to ligand native pose for each protein.

1SQ6 1TQX 1ZRL 3NTJ 4JNO 5JBE 5ZT1 6E02 6JMI 7OXS
Our method -5.6 -5.2 -5.3 -5.4 -7.0 -5.2 -5.2 -5.2 -5.2 -5.2
Native poses -5.4 -5.4 -5.2 -5.2 -7.0 -5.2 -5.3 -5.2 -5.2 -5.7



(a) Top view of the Path (b) Side view
(c) Backward view

Fig. 7: Path planned using feasible critical points information (ligand conformations generated around 4JNO protein surface)
to the binding site. The side and backward views show intermediate ligand conformations of the path.

a binding affinity measure. While our method considers the
tertiary-level structure of the protein, i.e., protein surfaces, the
geometric information map shows the potential to contribute
to the prediction of potential drug target sites when combined
with machine learning techniques. In future work, we plan to
utilize the geometric information of protein surface as clas-
sified potential binding sites and inculcate machine learning
techniques with a diverse combination of protein and ligand
bio-molecules to analyze the prediction accuracy of the protein
active binding sites based on the learned geometric features.
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