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Abstract— With the continuous improvement of the capabili-
ties of robots and the increasing complexity of the environments
they successfully traverse, this paper presents useful concepts
and definitions about the heterogeneous nature of planning
spaces within the context of motion planning. Our methodology
uses the property of visibility, expansiveness and homotopy class
to develop algorithms that represent the heterogeneity of the
planning space. Our algorithm also include a machine learning
technique that identifies sub regions and then intelligently
applies necessary existing strategies to create well connected
maps in that sub region. We make comparisons with two
other machine learning methods in a variety of simulated
robot environments ranging from simple homogeneous rooms
to complicated maze environments. Our method outperforms
the other two methods in terms of time to build a roadmap,
the number of nodes needed and the number of connected
components generated.

I. INTRODUCTION

An important research area in robotics is motion plan-

ning, navigation and localization which aids in the quest

for precision and accuracy in robots. Planning motions is

needed in many disciplines such as planning for deformable

robots [18], [33], [36], manipulation planning [24], character

animation for games and movies, and virtual prototyping. A

robot is a movable object where the position and orientation

is defined by a set of parameters such as the degrees of

freedom, angles and displacement of its links. The robot’s

configuration can be described based on the configuration

space (the set of all possible placement of the robot) which

contains both feasible and infeasible regions of the space.

These research areas and tasks present experts with a

challenge of deciding the best algorithms to use given

varying heterogeneous environments that exist in nature e.g.,

a surgical needle navigating organs to get to the heart

during surgery, a rover moving among debris to rescue or

retrieve humans in disaster areas. Unfortunately, most of

these algorithms are not adaptable to different scenarios.

Previous work [2], [9], [22] show the need to explicitly define

parameters used in different algorithms ahead of time which

is difficult to do.

There is increasing concern about the development of

a variety of motion planning algorithms [26], [29], [34],

perception [17], [42] and localization [4], that have very little

scalability for success outside of predefined and explicitly

defined parameters. There is some evidence to show that

combining different algorithms [2], [9], [22] in a heteroge-

neous environment improve performance [16] but this has
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been applied with only intuitive knowledge of the environ-

ment.

There are algorithms that look into the different states,

regions and features of the environments for these robots

developed overtime [8], [14], [38], with a specific interest

e.g., narrow passage, homotopy classes, but not necessarily

considering the heterogeneity. The placement of discrete

objects (obstacles) (i.e. varying in shape, size, volume and

dimension) randomly in C-Space forming combination of

either C-free, narrow passage, cluttered or blocked regions

defines the term ”heterogeneity” within the context of this

paper.

Ekenna et. al in [16], presented an algorithm that used

machine learning concepts to help partition the configuration

space (C-Space) into homogeneous pieces which produced

some improved results but the underlying problem of de-

termining if an environment is heterogeneous remains. In

another work Bhattacharya et. al [5], attempts to generate

homotopy classes of the environment which helped deter-

mine the feasibility of an object transitioning from one state

to the next in a given environment.

In this paper, we use the property of visibility [20], expan-

siveness and homotopy classes [5], to analyse and investigate

the heterogeneity of the planning space. This informed

knowledge of the planning space is used in conjunction with

a reinforcement learning technique to determine the best

planning strategy to apply to different identified regions.

We compare our work with HybridPRM [16], [22] and

UtilityGuidedSampling [10], [11] strategies, and our results

indicate better performance in terms of time to solve query,

number of nodes/configuration generated and number of

connected components present in the map.

II. RELATED WORK

In this section we discuss motion planning primitives

related to our work to include C-Space properties such as

expansiveness and visibility, and the notion of homotopy

class in relation to the C-Space.

A. Motion Planning Preliminaries

The motion planning problem involves finding a valid path

(e.g., collision-free and satisfying all joint limit and/or loop

closure constraints) for a movable object starting from its

start configuration to a goal configuration in an environment

[13]. A single configuration is defined based on the movable

object’s d independent parameters or DOFs (degrees of

freedom).

A robot is a movable object whose position and ori-

entation can be described by n parameters, or degrees of

freedom(DOFs), each corresponding to an object component



(e.g., object positions, object orientations, link angles, link

displacements). Hence, a robot’s placement, or configuration,

can be uniquely described by a point (x1, x2, ..., xn) in a

n dimensional space (xi being the ith DOF). This space

consisting of all possible robot configurations (feasible or

not) is called configuration space (C-Space) [28]. The subset

of all feasible configurations is the free space (C-free), while

the union of the unfeasible configurations is the blocked

or obstacle space (C-Obstacle). Thus, the motion planning

problem becomes that of finding a continuous trajectory in

C-free connecting start and goal pair of configurations.

1) Sampling Based Motion Planning: Sampling-based

motion planning methods [13] are a state-of-the-art approach

to solve motion planning problems. These methods are

known to be probabilistically complete because even though

there is no guarantee to find a solution if one exists, the

probability of finding a solution if it exists increases as the

number of samples generated also increase. Sampling-based

methods are broadly classified into two main classes: graph-

based methods such as the Probabilistic Roadmap Method

(PRM) [25] and tree-based methods such as Expansive-Space

tree planner (ESTs) [21] and Rapidly-exploring Random Tree

(RRT) [27]. PRM variants consider different topology which

include uniformly generating samples in the environment

[25], sampling near obstacles [2], [3], [9], [19], [41], sam-

pling with constraints placed on the robots [31] and planning

with uncertainty existing in the environment [23].

B. C-Space Properties

Two configurations q and q′ forming a path or a contin-

uous sequence of adjacent configurations existing between

them is termed as visible. Two configurations q and q′ are

therefore connectable if there exists a continuous sequence

of configurations that are also visible to each other. In such

a case, we define connectable (q, q′) = true. We define a

connected component CC of C-free as a maximal subset

of configurations CC ⊆ C-free such that ∀q, q′ ∈ CC,

connectable(q, q′) = true. C-free may comprise of one

or more connected components.

1) Visibility Properties: The degree to which two config-

urations can be said to be connectable defines the visibility

of two or more nodes in the C-Space. This could be based

on e.g., distance, radius or topology between configurations.

Any configuration q is said to be ε - good [20], if it is con-

nected to another visible random configuration qrand using

the same sampling method for q e.g., uniform sampling. such

that an edge connecting configuration points is collision-free

or exists in the absence of obstacle.

2) β - goodness: The volume of β-LOOKOUT(G) is

αµ(G), where G is the subset of connected components in the

C-Space and µ represents the volume of subset G. If either

α or β is small, then it would be difficult to sample points

and build roadmap between the connected components.

C-Space is said to be ε, α, and β-expansive, if every

point q in connected components is ε-good and its connected

components are all ε, α, and β-expansive. When ε, α and β

are reasonably large, it guarantees larger lookout or expan-

siveness of C-Space.

Research by Nissoux in [39], outlines visibility for a

mechanical system moving in a workspace. The algorithm

incrementally constructs visibility roadmaps by randomly

sampling the configuration space and connects collision-

free samples using the local planner that considers the free

space representation of the configuration space. Denny et

al [15] introduces visibility during RRT construction and

define visibility as an estimation of how easy it is to connect

a configuration q to the other configurations in its local

surroundings.

C. Homotopy Classes

A set of trajectories (or paths), q0 to q1, through

q2, q3, q4, q5, q6 as shown in Figure 1 are said to be in the

same homotopy class [5] iff one can be smoothly deformed

into the other without intersecting obstacles, otherwise they

belong to different homotopy classes.

Fig. 1: Homotopy Class of trajectories

In Figure 1, the paths connecting points q0 to q1 through

q2 and q3 or q4, q5 and q6 are in the same homotopy classes

respectively whereas paths connecting q0q2q1 and q0q4q5q1
are in different homotopy classes as they enclose object

between them.

Homotopy class definitions of the C-Space has been

investigated in [6], [7] where representative trajectories are

identified.

Pokorny and Kragic [35] use cohomology as a tool for

classifying preexisting trajectories and create a topological

motion planing method. Salzman et. al [38] propose an

algorithmic framework that combines geometric methods for

exact and complete analysis of low dimensional C-Space

with sampling based approaches that are also appropriate

in higher dimensions. Manifolds are decomposed into cells

in C-free and C-Obstacle regions and using the notion of

homotopy class definitions. This work however gives no clear

evidence for any number of clearance path in any given

region of the planning space.

The algorithms in the cited papers has a foundation in

expansiveness, visibility and homotopy classifications of the

C-Space, our algorithm uses these properties to formally

define the heterogeneity of the planning space. Our hetero-

geneous properties in this paper can be integrated into any

sampling based planning method and helps to inform in an

automated fashion the best methods suitable for any envi-

ronment scenario. In this paper we integrate these properties

with a machine learning inspired motion planing framework.

D. Planning Space Decomposition

In this work we implement an algorithm using machine

learning concepts similar to the following discussed research.



Feature Sensitive Motion Planning [32] uses machine learn-

ing to help partition and characterize planning problems.

Here, the planning space is subdivided in a recursive manner,

then each region is classified and assigned an appropriate

planning method. One main strength of this approach is its

ability to map workspace/C-Space topologies for a particular

planner. However, it is not able to adapt sampling methods

to needed regions over time.

HybridPRM [22] employs a reinforcement learning ap-

proach to select a sampling strategy with a greater chance

for success. However, these samplers are applied globally

over the entire problem, and the features of the planning

space, such as topology, are not used when deciding where

to apply the selected method.

The Unsupervised Adaptive Strategy (UAS) [40] is similar

to feature sensitive motion planning because it identifies

regions and specifies a planner to the region. UAS also

considers the topology of the space. In UAS, the K-means

clustering method is used to partition the space using a

training roadmap and then HybridPRM [22] is applied in

each region. This method showed an improvement in speed

and quality in the roadmaps generated, but does not consider

all aspects of the planning process in particular, the edge

creation process.

Utility Guided Sampling [10], [11] uses information from

previous experiences to guide sampling to more relevant

areas of the C-Space. Every exploration of the C-Space

provides information to the motion planner. They construct

an approximate model of the C-Space. Their model captures

and maintains information from each configuration to predict

the state of unobserved configurations and reduce collision

detection calls.

RESAMPL [37] uses local region information (e.g., en-

tropy of neighboring samples) to make decisions about both

how and where to sample, and which samples to connect

together. This use of spatial information about the planning

space enables RESAMPL to increase sampling in regions

identified as narrow and decreases sampling in regions iden-

tified as free. These approaches do not consider the topology

that is discovered within the explored space.

Task and Motion planning (TAMP) [12] integrates logical

search over high level actions by observing and making

decisions based on the motion and task being currently

performed. It uses the markov decision process to learn the

appropriate inverse kinematics for robots. TAMP however

considers the entire dynamics of the environment and the fi-

nite state of the machine as an input to the reward parameter.

This method however does not give an assurance for the best

method being used consistently in an environment.

The methods cited aim to subdivide and simplify the plan-

ning space using different machine learning techniques. We

utilize these ideas and include a machine learning paradigm

in our algorithm.

III. HETEROGENEOUS PROPERTY OF THE C-SPACE

This section discuss the properties of different regions in

the C-Space i.e., free space region, obstacle region, narrow

passage, cluttered region and the heterogeneity of the C-

Space as integrated in our algorithm.

Free Space Region: Two configuration points in a region

are in C-free, if the visibility of points allow them to

connect to each other forming connected components in the

region, i.e. region is (ε, α, β)-expansive, and the trajectories

connecting these points lie in the same homotopy class.

Obstacle Regions: With no visibility and expansiveness in

the region, the configuration points fails to connect each other

reporting existence of no trajectories connecting the points

in homotopy class. This results in a blocked (C-Obstacle)

region i.e. region is not (ε, α, β)-expansive.

Narrow Passage Regions: Two configuration points in

region, where region is (ε, α, β)-expansive, are in a narrow

passage if there are at least some trajectories in the homotopy

class connecting the points with low visibility. The low vis-

ibility of points infer partial expansiveness of configuration

points in F.

Cluttered Region: For any set of configuration points,

we say the points are in a cluttered region if the position of

multiple C-Obstacle interrupts the existence of trajectories in

the same or different homotopy classes connecting the con-

figuration points with varying visibility and expansiveness of

region (F) in C-Space. Region F in Figure 2 defines cluttered

region, where F1 represents blocked region, F2 represents

narrow passage, F3 represents C-free and F4 represents an

environment implicitly comprising the properties of homo-

topy classes and expansiveness. The varying expansiveness

of F within each sub-region depends on the position of the

C-Obstacle in F as the points connecting each other may fail

or succeed in doing that.

Fig. 2: Cluttered Region

IV. HETEROGENEOUS PLANNING SPACE ALGORITHM

To achieve the division of the C-Space into homogeneous

regions based on defined properties, we developed HPS (Het-

erogeneous Planning Space) algorithm that can recognize the

regions as C-free, blocked (C-Obstacle) and narrow passage,

and calculates the reward for the sampler to be applied in

the region using reinforcement learning approach.

A. Identifying Heterogeneous Spaces

The HPS algorithm as seen in Algorithm 1 identifies

each region of the heterogeneous space using the concept of

visibility, homotopy classes and expansiveness i.e. the robot

placed in an environment, identifies its current position as

either free, narrow or blocked based on identified properties

of the space.



Algorithm 1 Heterogeneous Planning Space (HPS)

Input. Let S and G be start and goal configuration points

where S6=G, visibility parameter ε, connected compo-

nent parameter β, Homotopy class H, region parameters

cfree (C-free), cnarr (narrow passage) and blocked (C-

Obstacle).

1: Initialize: cfree←False, cnarr←False, blocked←False

2: while β ≥ 1 and H(S,G) exists do

3: if ε = 1 then

4: cfree← true

5: CalculateReward(ε)

6: else if 0 < ε < 1 then

7: cnarr ← true

8: CalculateReward(ε)

9: else

10: blocked← true

11: end if

12: end while

The algorithm here takes the calculated values of ε-

goodness for each configuration point and β-LOOKOUT for

connected components in the environment, i.e. ∀ point q ∈

C-Space, it sees at least ε-fraction of C-Space.

µ(V(q) ≥ εµ(C − Space) (1)

The β-LOOKOUT for the set of connected component C is

µ(β − LOOKOUT (V(C))) ≥ αµ(V(C)) (2)

such that each point in C sees β-fraction of the complement

of C, where V(C) refers to the visibility for set C. It

investigates the existence of connected components in the

environment and then identifies the region based on the value

of ε for each sample point while there exists path from the

start to goal configuration in the homotopy class, as shown

in Algorithm 1. It identifies three regions i.e., C-free, narrow

passage and blocked (C-Obstacle) region. In C-free region, a

configuration point could successfully connect to all nearby

points easily, i.e. ε = 1. In the narrow passage region, a

configuration point can connect to only some point due to

low visibility as expansion will either fail or occur in small

increments in the region. Otherwise a region is said to be a

blocked region if points fails to connect its neighbors. The

robot’s internal state continues to update information about

the visited regions and the similarities to the new regions it

encounters.

B. Machine Learning and Heterogeneous Spaces

Algorithm 2 uses a reinforcement learning approach to

calculate rewards for all sampling methods being used based

on the type of region it encounters and it subsequent perfor-

mance (success rate).

From the available set of sampling methods, Algorithm 2

calculates the execution time for randomly selected samplers

in C-free, narrow passage or blocked regions. Based on the

performance of samplers in a region, the reward is computed

for the sampler with minimum execution time, i.e.

γ = e(ρ∗ε∗k) (3)

Algorithm 2 CalculateReward(ε)

Input. Visibility parameter ε, learning rate parameter ρ. S

denotes the set of motion planning samplers and matrix

M stores the time for each sampler in a region.

Output. Map N containing region, sampler and reward.

1: ρ← 0.1, n = size(S), i← 0
2: declare M[region][sampler]

3: while i ≤ n− 1 do

4: si[t]← GetExecutionT ime(si)
5: M [ε][si] = si[t]
6: i← i+ 1
7: end while

8: r ← GetRegion(ε)
9: if M not NULL then

10: k ← min(M [ε][si])
11: γ ← e(ρ∗ε∗k)

12: N.push(r, s, γ)
13: end if

14: return N

The reward is an exponential factor of the type of region

and execution time of the sampler, where ε refers to the type

of region, k is the minimum time taken by a sampler in a

region and ρ is constant learning rate. The computed reward

(3) is stored in a nested map N for the respective region and

sampler. A suitable sampler for an identified region is chosen

based on the learning reward scheme and information stored

in N. The reward scheme tracks the success and failure of

the different planning methods being applied, which helps in

building a self-learning capability for the robot in applying

the best method in any environment scenario.

V. EXPERIMENTAL RESULTS

We discuss our experimental setup, results and compar-

isons with HybridPRM and UtilityGuidedSampling.

A. Experimental Setup

We perform experiments in seven different environments.

These environments consists of four homogeneous regions

i.e. free space, narrow passage, blocked region, cluttered

region and three environment with combination of two or

more homogeneous regions.

• Empty room: The environment has a room with no

obstacles in it as shown in Figure 3a.

• Cluttered Environment: Obstacles are cluttered around

the room as shown in Figure 3c. The robot has to

traverse these obstacles successfully to reach its goal.

• Blocked environment: The environment has a solid

block covering the space diagonally in the room as

shown in Figure 3b.

• Zig-Zag tunnel: This environment consists of a narrow

tunnel that the robot has to traverse in order to move

from one side of the room to the other as shown in

Figure 3d.

• 6 DOF Heterogeneous Environment: This environ-

ment comprises of a free space, narrow passage, clut-

tered region and blocked region within it as shown in



Figure 4a. The robot is a 6 DOF articulated linkage that

has to pass through a hole in the wall and encounter

obstacles at the other end of the wall.

• Kukayoubot : An 8 DOF robot in an environment with

four different rooms, see Figure 4b. Its base has 5 DOFs

that allow it to move forward, backward and rotate,

and its arm has 3 DOFs. The robot moves through

different rooms within narrow passages and arrives at

its destination where it performs an action (grasps or

puts an object down).

• Maze3D : A cylindrical robot in a tunnel-like environ-

ment structured as maze searches for the best path to

traverse to reach goal as shown in Figure 4c.

The environments are taken from the Parasol Lab bench-

marks at Texas A & M University [1]. We use the brute

force K-closest neighbor finding technique [30], the eu-

clidean distance metric and a straight line local planner.

The experiment aims to solve a query (start to goal) for all

environments except the blocked region where we calculate

the time taken to generate 100 nodes in its free regions.

The environments were designed to simulate and study the

behavior of HPS in the different regions which make up our

definition about heterogeneous spaces. Experimental results

for each environment are averaged over 10 runs with different

random seeds and run on a Dell Optiplex 7040 desktop

machine. Sample nodes and generated paths for 6 DOF

Heterogeneous, KukaYouBot and Maze3D environments are

shown in Figure 4.

B. Querying the Environment

The performance of the different strategies i.e., HPS,

HybridPRM and UtilityGuidedSampling are compared based

on the number of nodes generated (see Figure 5a), number

of connected components formed (see Figure 5b) and the

time taken to solve a query as shown in Table I. We generate

plots to show the learning trend for HPS based on the reward

probabilities generated for each sampler used.

In the empty room (see Figure 3a), UtilityGuidedSam-

pling strategy performs better than HybridPRM and HPS

strategies in terms of time as seen in Table I. This is a simple

room with no obstacles that requires no learning and so the

learning methods incur an unnecessary overhead which is

reflected in the time and number of nodes generated. We

do not produce learning plots for this environment since no

learning occurred. The aim of this experiment was to show

the trend in performance of the methods being compared

across different representative regions of a heterogeneous

environment. UtilityGuidedSampling strategy did not finish

for other environments apart for the empty room and the

cluttered environment and our results in Table I indicates

DNF (did not finish) for the other experiments.

In the blocked environment, we perform an experiment

to determine how HPS performs in an environment where it

is not possible to solve a query due to a obstacle completely

obstructing any trajectory from the start to a goal position.

HPS and HybridPRM returns similar time needed as seen in

Table I and the number of connected components as seen in

Figure 5b while UtilityGuidedSampling was not successful

in generating any feasible node. The learning plot in Figure

6a shows a trend with higher probabilities being recorded for

the BasicPRM and Gauss Sampling method in HPS. OBPRM

and Bridge Sampling method depreciates in performance due

to the constant failures that would occur in this environment.

There is a zero chance of connecting nodes on the opposite

side of the obstacle and so methods that tend to take into

cognizance the obstacles in the environment will fail.

In the cluttered environment, we have similar perfor-

mance between HPS and HybridPRM in terms of time

needed to solve the query. HPS however produces less

connected components as seen in Figure 5b which is an

improvement over HybridPRM even in this simple envi-

ronment. In the learning plot in Figure 6b, HPS utilizes

more of BasicPRM and OBPRM sampling strategies which

according to literature perform well in free and obstacle

regions respectively and HPS is able to capture this.

In the zig-zag tunnel environment, here we see a more

complicated environment with an a narrow passage and the

aim is to traverse this narrow tunnel to the goal position.

HPS shows an improvement in performance in comparison to

HybridPRM in terms of time (see Table I) while using similar

number of nodes and connected component. This result

indicate our algorithm’s ability to improve performance as

the environment gets more heterogeneous. The learning plot

in Figure 7a and 7b shows the learning trend of HPS in the

free and narrow region of the zig-zag environment and we

see that the Gauss and Bridge has a higher probability than

OBPRM and BasicPRM. The strengths of Gauss and Bridge

according to literature comes into play in this environment

and HPS utilizes this methods during its learning phase.

In the 6 DOF heterogeneous environment, HPS is not

the best performing method in terms of time but this is

comparable with HybridPRM with only a 1 second differ-

ence. HPS however uses less nodes to solve the query and

equal connected components produced. In the learning plot

as seen in Figure 8a and 8b, we see that HPS has a higher

probability for Gauss and Bridge in the free region and

in the cluttered region OBPRM and BasicPRM sampling

methods have higher probability. This again is indicative

of the properties of these different sampling methods being

used. In the narrow region, the learning plot for HPS as

seen in Figure 8b shows a higher probability for OBPRM

and BasicPRM in most cases.

In the KukaYouBot environment we see an improved

performance of HPS in terms of time needed to solve the

query. This environment has been proven to be difficult to

plan for as seen in [16] but, HPS cuts down the time needed

by almost an 8th the time needed by HybridPRM. HPS also

uses less nodes and produced less connected components

and this is a vast improvement in comparison to previous

methods. In the learning plot, the Bridge Sampling method

has a higher probability in most cases with OBPRM coming

a close second. This two strategies tend in work well in

obstacle ridden environments and HPS utilizes them while

also having simpler methods like BasicPRM to use in simple

regions of the environment.

In the Maze3D environment we see another improvement



(a) Empty Room (b) Blocked (c) Cluttered (d) Zig-Zag Tunnel

Fig. 3: Homogeneous Environments Studied

(a) 6 DOF Heterogeneous (b) KukaYouBot (c) Maze3D

Fig. 4: Heterogeneous Environments Studied
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Fig. 5: Performance Plots

Environment HPS HybridPRM UtilityGuidedSampling

Empty room 0.014 0.010 0.003

Blocked environment 0.169 0.168 DNF

Zig-Zag Tunnel 89.32 100.02 DNF

Cluttered environment 0.25 0.29 12.08

6 DOF Heterogeneous Environment 17.41 16.90 DNF

KukaYouBot environment 1711.30 9035.62 DNF

Maze3D 102.91 135.35 DNF

TABLE I: Map Generation time for each sampler in a environment

(a) Blocked Environment (b) Cluttered Environment

Fig. 6: Homogeneous regions



(a) Free region (b) Narrow passage

Fig. 7: Zig-Zag Tunnel Environment

(a) Free region (b) Narrow passage

Fig. 8: 6 DOF Heterogeneous Environment

(a) Free region (b) Narrow passage

Fig. 9: KukaYouBot Environment

of HPS in terms of time needed to solve the query, fewer

nodes needed and fewer number of connected components.

The learning plot in Figure 10a and 10b, shows that HPS has

a higher probability for BasicPRM in the free region and a

mix of Gauss and OBPRM in the free region. HPS once

again utilizes the capabilities of Gauss and Bridge samplers

in the narrow region.

VI. CONCLUSION

In this paper we have presented formal definition about

the heterogeneity of the planning space from previously

defined properties e.g., visibility. Using this definition, we

have proposed an efficient methodology that take cares of

such heterogeneous environments and intelligently apply

suitable sampling methods in the different regions. We have

experimentally demonstrated its efficiency, versatility and

application in varying environment scenarios. Our method is

applicable to any robot dimension and can have application

in life-saving and real world application such as search and

rescue and agricultural robot monitoring applications.
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