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Abstract— We present an incremental topology-based motion
planner that, while planning paths in the configuration space,
performs metric gluing on the constructed Vietoris-Rips simpli-
cial complex of each sub-space (voxel). By incrementally captur-
ing topological and geometric information in batches of voxel
graphs, our algorithm avoids the time overhead of analyzing
the properties of the entire configuration space. We theoretically
prove in this paper that the simplices of all voxel graphs joined
together are homotopy-equivalent to the union of the simplices
in the configuration space. Experiments were carried out in
seven different environments using various robots, including
the articulated linkage robot, the Kuka YouBot, and the PR2
robot. In all environments, the results show that our algorithm
achieves better convergence for path cost and computation time
with a memory-efficient roadmap than state-of-the-art methods.

I. INTRODUCTION

Sampling-based algorithms have shown tremendous suc-
cess in solving complex high-dimensional robot motion plan-
ning problems with probabilistically complete guarantees,
i.e., the planners guarantee to find a solution if one exists
as the number of samples reaches infinity. These algorithms
achieve asymptotic optimality by incrementally sampling
the robot’s configuration space to continually improve the
shortest path in an anytime manner [1]. The two widely
used sampling-based paradigms are Probabilistic RoadMaps
(PRMs) [2] and Rapidly-exploring Random Trees (RRTs)
[3]. PRM computes a roadmap by randomly generating
configurations via a graph search to locally connect to nearby
configurations, whereas RRT locally explores the space by
expanding one or more trees in random directions until it
either finds a path or reaches a computation limit. While
such algorithms often compute a feasible path quickly, a
roadmap generated by them does not optimize the sub-space
information of the configuration space for self-reuse or as
input to other planners. Despite the progress made by these
planners to solve high-dimensional problems, little effort de-
votes to incrementally processing the sub-space information
of the configuration space by capturing the topological or
geometric features.

In our work [4], and [5], we combined the Topological
Data Analysis (TDA) approach, i.e., Vietoris-Rips (VR)
complex and discrete Morse theory, with sampling-based
algorithms to construct a planner that extracts the topological
and geometric representations of the configuration space
for memory-efficient path planning. The methods generated
near-optimal paths using only the extracted information from
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Fig. 1: A graph illustration of our algorithm in R2 space. (1) Our method
first constructs the boundary of a sub-region with the start configuration
as the center, and within this local voxel, the region generates collision-
free configurations. (2) It uses topological collapses to build a skeleton of
simplicial complexes from which topological information gets extracted. The
part of the obstacles covered under each voxel polytope gets considered for
geometric information extraction without pruning them from the sub-space,
thus, preserving the topological significance with no information loss. (3)
We call a distance metric method to find the closest configuration to the goal
and use it as the center for the next voxel polytope. (4) The yellow bar on
the obstacle indicates the detected critical points that identify configurations
in its vicinity. (5) It plans a local path in each voxel graph and glues/joins
with the local path of the next extending voxel polytope. These voxels get
created until either the goal or a computational limit is reached. (6) Finally,
it returns a global path that connects the start and goal configurations.

our roadmap. The work also showed the reusable capability
of our roadmap by any PRM or RRT variants.

Contribution: In this work, we present a novel algo-
rithm that incrementally glues the simplices of partially
observable space while planning routes in the configuration
space. We denote each sub-region as a voxel and theoreti-
cally/empirically prove that the VR complexes of all voxel
graphs glued together are homotopy equivalent to the union
of the VR complexes of the planned space. Our algorithm
provides a sub-optimal solution by generating a near-optimal
local path in each voxel and gluing them together to find
a global route from the start to the goal positions of the
robot. In this way, our algorithm incrementally applies the
topological data analysis approach to each voxel block by
preserving only necessary configurations and edges repre-
senting the unique property of the sub-space. This work
contributes:

• An algorithm that creates voxel polytope [6] to represent
the underlying sub-space of the simplicial complex.

• A topology-based path planner that incrementally ex-
tracts the topological and geometric information of the
partially observable space for memory-efficient path
planning.

• A proof of the geometric feasibility of gluing voxel
graphs in different dimensions of configuration space.



Our proposed algorithm achieves a better path cost
and computation time convergence with a memory-efficient
roadmap compared to other methods in all environments, as
discussed in Section VI.

II. RELATED WORK

In this section, we present the preliminary definitions for
motion planning and discuss significant prior work relevant
to our proposed algorithm.

A. Motion Planning Primitives

A robot’s placement, or configuration, can be uniquely
described by a point (x1, x2, ..., xn) in an n dimensional
space (xi being the ith degrees of freedom (DOF)). The
space consisting of all possible robot configurations (feasible
or not) is called configuration space (Cspace) [7]. The subset
of all feasible configurations is the free space (Cfree), while
the union of the unfeasible configurations is the obstacle
space (Cobst). Cspace defines the planning space, consisting
of the constraint-free region of a robot, i.e., Cfree space,
and the set of obstacles O (or Cobst) in it. Given an initial
configuration s ∈ Cfree and a goal configuration g ∈ Cfree, the
motion planning problem thus becomes finding a continuous
valid path (e.g., collision-free and satisfying all joint limit
and/or loop closure constraints) in Cfree connecting them [1].

B. Sampling-based Motion Planners

Research work exists that combines the strengths of PRMs
and RRTs into a planner to solve diverse motion planning
problems. Sampling-based Roadmap of Trees (SRT) [8]
combined PRM and RRT methodologies by growing RRTs
from configurations generated by PRM. A motivation behind
SRT was to exploit parallel processing. Similarly, SparkPRM
[9] employed PRM to quickly cover large areas of the
planning space while RRT locally explores narrow passages.
We utilize a similar concept to incrementally compute our
local topology roadmap by using the logic of PRM to
sample configurations within each voxel block and RRT to
connect/extend these blocks in this work.

Some other approaches utilized workspace decomposition
to find narrow or difficult areas of the workspace to bias
Cspace sampling. Yershova et al. in [10] proposed a sampling
framework- Dynamic-Domain RRT, which grows Voronoi-
based regions in the dynamic environment. It biases the
random node selection to be within a radius r of qnear
to enable expansion. The radius is determined dynamically
from the failed expansion attempts. Improving on this ap-
proach, Denny et al. in [11] proposed Dynamic Region-
biased RRT, which biases growth based on dynamically
moving regions using Reeb graphs. The algorithm performed
workspace decomposition and presented the Cobst into holes
in an embedded graph, which restricted its usage in non-
uniform environments. An extension to the approach, [12]
combined dynamic region sampling with PRM to connect
multiple connected components for effectual solutions with
complete coverage. While these methods reduce the total
configurations required to compute a solution, they perform
computationally-intensive geometric tests to accept samples
into the roadmap, resulting in large planning times.

C. Incremental Motion Planners
Sampling-based algorithms for optimal motion planning

sample the configuration space incrementally to determine
shorter paths in an anytime manner [13], [14]. Karaman
and Frazzoli proposed k-PRM* in [15] as an asymptotically-
optimal variant of PRM that, with enough computation time,
produces an optimal graph with probability 1. Another work
in [16] proposed the LazyPRM* strategy to reduce the com-
putational cost of collision checking on achieving an optimal
solution. The method avoids checking edges with no chance
of improving upon the current best path, thereby reducing the
per-sample computational cost and accelerating convergence.
Ichnowski et al. in [17] applied an incremental approach to
refine the shortest path obtained from the multilevel-sparse
roadmap for generating an asymptotically-optimal solution.
A more recent work in [18] presented Guided Incremental
Local Densification (GuILD), an incremental densification
framework that leverages partial search information to focus
sampling within the informed set. GuILD leverages the
search tree to adapt the Local Subsets and converges to the
optimal path with fewer samples. Similarly, in this work,
we apply incremental planning to compute shorter paths
for each sub-region while taking advantage of extracted
topological and geometric information that becomes crucial
in connecting feasible edges closer to the Cobst.

III. PRELIMINARIES

This section discusses some important mathematical con-
cepts used in our proposed algorithm.

A. Space approximation using Vietoris-Rips complex
In our previous work [4], we applied the Vietoris-Rips

complex to perform a memory-efficient path planning in a
given Cspace by generating a homotopy-equivalent topologi-
cal map of the Cfree. A general definition of the Vietoris-Rips
complex reads as below.

Definition 1: (Vietoris-Rips complex) Given a set S of
points in a Euclidean space E, the Vietoris-Rips complex
R(S; ε) is the abstract simplicial complex whose k-simplices
are the subsets of k + 1 points in S of diameter at most ε.

In this prior work, a simplicial collapse removed redundant
information to provide a space approximation of Cfree as a
pre-processing step.

B. Discrete Morse function in Cspace
We applied discrete Morse theory to the same simplicial

complex to identify critical points on the boundary of Cobst
and make the following formal definition.

Definition 2: Let D be the Euclidean distance function
that measures the distance between the point x ∈ Cfree and
the nearest point y on the closest obstacle Oi ∈ Cobst, that
is, D(x) = miny∈Oi

∥x− y∥.
Definition 3: Let Γ(y, ϱ) be a density function where ϱ >

0 and y is the point on the obstacle. The function Γ counts
all neighbors close to y in R(S) within distance ϱ.

Definition 4: Let f be a discrete Morse function on R(S)
restricted to the vertices of the Vietoris-Rips complex. In
our case, this is also the restriction of the Morse function
formally defined at any point in Cspace by

f(x) = D(x) · Γ(y, ϱ). (1)



Here, x represents a configuration in R(S), y refers to a
point on the closest obstacle to x, and ϱ is a constant. We
formally define identified critical points and feasible critical
points as below.

Definition 5: (Critical points) The set of critical points is
defined as the set of non-degenerate points on the convex
hull of each obstacle in Cobst when the given discrete Morse
function f reaches its extreme values, i.e., local minima or
maxima.

Definition 6: (Feasible critical points) This set is defined
as all vertices in R(S) at a radial clearance of ϱ from a
critical point of Cobst. In other words, it is the union of
intersections of vertices in R(S) within the metric balls of
radius ϱ centered at some critical point.

The feasible critical points computation is independent of
a specific calculation of ϱ, so the value of ϱ can be of any
choice. Here, we calculate the value of ϱ defined in [5].

IV. METHODOLOGY

We propose an incremental topology path planner that uses
the concept of voxel polyhedron [19] to consider partially
observable Cspace into sub-regions and perform metric gluing
to explore and cover the underlying space.

A. Voxel Polytope

Different from existing incremental work on roadmap
construction, whose incremental block is in the form of
samples, our proposed incremental approach is in batches,
and our blocks are in the form of simplices. The batched
step-by-step process generates local roadmaps of the sub-
space of Cfree decomposed as voxel polytope. The increase
in the number of voxels glued together is proportional to the
increase in the Cfree area covered by the robot resulting in a
higher probability of finding a solution if one exists. For each
voxel block/window, we consider the spherical boundary of
radius λ given as

λ = n ∗ d, (2)

where n is the dimensionality of Cspace and d is the diameter
of the circumscribed circle of the robot. So, the length of
the global path becomes equal to the total number of glued
voxel blocks times λ, i.e., gluing the local paths from each
connecting voxel. The connection between the configurations
in each voxel window is formed within the connection length
γ. We compute the value of γ as

γ = min(log(|Vi|)/|Vi|, η); i ≥ 0, (3)

where |V | is the number of the vertices generated in each
voxel window i to meet the sampling condition from [4]. η is
the constant value provided by the user. Here, the boundary
of each voxel window gets considered as the criteria for
satisfying the sampling condition. In the subsequent section,
we discuss the theoretical proof of metric gluing our local
topology maps together.

B. Metric gluing of simplicial complexes

The work [20] provides mathematical proof showing that
the Vietoris-Rips complex of two metric graphs glued to-
gether along a sufficiently small sub-complex is homotopy
equivalent to the union of the Vietoris-Rips complexes.

In general, the term metric space refers to a set X
equipped with a distance function m : X2 → X satisfying
the customary axioms: non-negativity, symmetry, the triangle
inequality, and the property that the value 0 is achieved
exactly on the pairs of the type (x, x). Let us assume two
metric spaces X1 and X2 with a set-theoretic intersection
X1

⋂
X2. We say the intersection is a well-defined on metric

space if the two distance functions m1 and m2 agree on
(X1

⋂
X2)

2. Notice that in general, even in this case, the
distance function on the set-theoretic union X1 ∪X2 is not
well-defined in a natural way, and so, there can be more
than one metric on X1 ∪ X2 which restricts to the given
metrics on X1 and X2, but if X1 and X2 are subsets of a
larger metric space X and the metrics are the restrictions
of an ambient metric m on X then we can conclude that
m gives a unique natural extension of both m1 and m2 to
the restriction of m on X1

⋃
X2. When we take another

perspective where m1 and m2 are path metrics as usually
defined in graphs, the path metric on the union of graphs
is, in fact, a well-defined extension. Accordingly, our metric
spaces are either sub-regions of Cfree or sub-graphs of the
ambient graph obtained as the 1-dimensional skeleton of the
Vietoris-Rips complex from samples on Cfree.

A Cspace is a topological space, so we apply the properties
of metric gluing in it to join the simplices of our voxel
graphs. Suppose DA and DB represent the simplicial com-
plex obtained after the collapse on metric spaces A and B
respectively, and H is a sub-complex on the vertices common
to both A and B metric spaces. The function diam refers to
the circle diameter that circumscribes the metric space. For a
subset Q of a metric space, we define the diameter diam(Q)
as the supremum of values m(x, y) over all choices of x,
y ∈ Q. Theorem 8, as stated in [20] by Adamaszek et al.,
reads as follows.

Theorem 1: Let A and B be metric spaces with A
⋂
B =

H , where H is a closed subspace of A and B , and let r > 0.
Consider A

⋃
H B , the metric gluing of A and B along

the intersection H . Suppose that if diam(DA

⋃
DB) ≤ r

for some Φ ̸= DA ⊆ A\H and Φ ̸= DB ⊆ B\H ,
then there is a unique maximal nonempty subset σ ⊆ H
such that diam(DA

⋃
DB

⋃
σ) ≤ r. Then R(A

⋃
H B; r) ≃

R(A; r)
⋃

R(H;r) R(B; r). Hence if R(H; r) is contractible,
then R(A

⋃
H B; r) ≃ R(A; r) ∨R(B; r).

The theorem proves that gluing Vietoris-Rips complexes
of finite metric spaces A and B provides a simplex homotopy
equivalent to the Vietoris-Rips complex of the A

⋃
B metric

space glued along the closed subspace H . A conclusion from
corollary 9 in [20] is as follows.

Corollary 1: Let A and B be metric spaces with A
⋂
B =

H , where H is a closed subspace of A and B, and A
⋃

H B
is their metric gluing along H . Let r > 0, and suppose
diam(H) ≤ r. Then R(A

⋃
H B; r) ≃ R(A; r) ∨R(B; r).

Further, the conclusion from theorem 1 extends to show
for metric graphs, from theorem 10 in [20].

Theorem 2: Let G = GA

⋃
GH

GB be a metric graph,
where GH = GA

⋂
GB is a closed metric subgraph of the

metric graphs GA and GB . Suppose furthermore that GH is
a path, and that each vertex of GH besides the two endpoints
has degree 2 not only as a vertex in GH , but also as a vertex
in G. Suppose the length of GH is at most l/3, where any



simple loop in G that goes through GH has length at least l.
Let A ⊆ GA and B ⊆ GB be arbitrary subsets such that A ⊆
GA = B ⊆ GB = A

⋂
B := H . Then R(A

⋃
H B; r) ≃

R(A; r)
⋃

R(H;r) R(B; r) for all r > 0. Hence if R(H; r) is
contractible, then R(A

⋃
H B; r) ≃ R(A; r) ∨R(B; r).

In this work, we extend this theory to high-dimensional
spaces with paths greater than degree 2, i.e., in Cspace.

Proposition 1: Let GA and GB be metric/voxel graphs
with GA

⋂
GB = GH , where GH is a closed sub-graph

of GA and GB with vertices of degree greater than 2, and
Gv = GA

⋃
GH

GB is the metric gluing of two metric graphs
along GH . Let r ≥ 2 ∗ λ > 0, the voxel radius from Eq. 2,
and suppose the diam(GH) ≤ r. Then R(A

⋃
H B; r) ≃

R(A; r) ∨R(B; r).
Proof: Let Gv , GA, GB , GH , A, B, and H satisfy

the same hypotheses as in the statement of Theorem 2. Let
z be a vertex in GA that extends to the voxel graph GB ,
such that z ∈ GA

⋂
GB and voxel B is centered at z. We

claim that no point p ∈ Gv \GH is within distance r of GH .
Indeed, if there were such a point p ∈ Gv \ GH satisfying
d(p, u) ≤ r and d(p, v) ≤ r where d is the Euclidean
distance function and u, v ∈ GH , then we could produce
a homotopically non-trivial loop through the gluing simplex
in GH with local path shorter than λ, giving contradiction
to our assumption. It follows that if the maximal non-empty
set of GA and GB has diam(σA

⋂
σB) ≤ r. Then there

exists a unique maximal clique σH connecting the simplicial
complexes R(A) and R(B). Hence, from theorem 2 we can
conclude that R(A

⋃
H B; r) ≃ R(A; r)∨R(B; r) can extend

for configurations of degree greater than 2. Figure 2 shows
an example of gluing two voxel complexes.

Fig. 2: Illustration of voxel graph gluing for GA and GB

Our work utilizes the metric gluing property of the VR
complex to connect local paths contributing toward the
formation of a global pathway from the start to the goal
position. The incremental approach first constructs the local
VR complex that is topologically equivalent to a sampled
sub-space and then glues different pieces together to cover
larger sections of the sampled Cfree space.

C. Incremental Path Planner

Algorithm 1 creates voxel polytopes with each ex-
tending configuration taken as its center until the robot
reaches/connects the goal configuration. The bounding radius
of the voxel gets computed from Eq. 2. At each voxel, the
algorithm generates a topology map of the local region from
steps in [4], [5] and plans the local path from start to an
intermediate configuration, and so forth until it connects to
the goal configuration. It constructs the VR complex using
method ConstructComplex() and perform simplicial collapse

to obtain 1-dimensional skeleton of simplex using Topolog-
icalCollapse() method. The generated local topological map
is used to extract critical points information and the con-
figurations (or feasible critical points) at proximity to Cobst
using methods IdentifyCriticalPoints() and GetValidConfig-
urations(), respectively. In line 9, the algorithm considers
the vertices of the simplicial complex and feasible critical
points to plan a memory-efficient route at a ϱ-clearance from
obstacles in method PlanPath().

Algorithm 1 Incremental Path Planner
Input: G: A dense graph comprising of vertex set V and edge set E where

G = {V,E}, Q: A query to be solved from a start to a goal position,
S: Simplicial Complex, Z: Voxel Polytope, λ: Radius of voxel polytope,
p: Local path set, P: Global path set, M: Glued voxel graphs, N: Nodes
set.

1: Let P ← null, p← null, q0 = start configuration.
2: Create a voxel polytope Z(q0, λ).
3: while Q not solved do
4: if Boundary(Z) not in collision with the robot then
5: S ← ConstructComplex(G,Z); ◁ Refer [4]
6: TopologicalCollapse(S); ◁ Refer [4]
7: C ← IdentifyCriticalPoints(S); ◁ Refer [5]
8: F ← GetV alidConfigurations(S,C); ◁ Refer [5]
9: p = PlanPath(Z, S, F)

10: if goal /∈ P then
11: N = ClosestToGoal(ConvexHull(S))
12: while N is not empty do
13: q = SelectRandomNode(N)
14: if q expands Z and q ̸= q0 then
15: Create a voxel polytope Zq(q, λ).
16: else
17: N = N \ q
18: Z ← Zq

19: q0 = q
20: Zq ← null
21: else
22: λ = 2 ∗ λ
23: Create a voxel polytope Z(q0, λ).
24: P = P

⋃
p

25: M = M
⋃

S
26: return {P,M}

The algorithm extends voxels by considering nodes from
the convex hull of S of the immediate voxel polytope and
narrows its selection to only nodes in the semicircle of the
convex hull that are facing or are closest to the goal position,
in line 11. It randomly selects a node from N for expansion
until it succeeds and discards failed configurations to avoid
redundancy, lines 12-17. It keeps performing these steps for
each extended voxel and incrementally glues simplices or
the planned local path of the voxel until the query is solved
or it reaches a computation limit. As a result, the algorithm
returns a global pathway P connecting the start and goal
configurations and the roadmap M .

V. EXPERIMENTAL SETUP

We executed experiments on a Dell Optiplex 7040 desktop
machine running OpenSUSE operating system and imple-
mented algorithms using the C++ motion planning library
[21]. We used the RAPID [22] collision detection method
during the sampling, connection, and query stages and used
the brute force k-closest neighbor finding technique [23], the
Euclidean distance metric method, and a straight line local
planner for sampling and connection stages. We perform
experiments in seven different environments with robots
ranging from 3 DOF to 14 DOF, as discussion follows.



(a) Parking Garage

(b) Cluttered environment

(c) Urban environment

(d) Heterogeneous 3D (e) Kuka YouBot en-
vironment

(f) 3D Tunnel

(g) PR2 robot environment

Fig. 3: Environments Studied

• Parking Garage: The 3D environment has a vehicle
parking garage structure, as shown in Figure 3a. The
robot is a planar car with 3 DOF.

• Cluttered environment: Obstacles are cluttered around
the room as shown in Figure 3b. The robot has to
traverse through these obstacles successfully to reach
its goal. The robot is a 6 DOF cube.

• Urban environment: This environment consists of
buildings as obstacles in the city-like structure, as shown
in Figure 3c. The robot is a 6 DOF drone.

• Heterogeneous 3D: A 3D maze environment with walls
and narrow passages between the walls. A robot has
to pass through maze-like tunnels to reach the goal, as
shown in Figure 3d. The robot is a 6 DOF toroidal plus.

• Kuka YouBot environment: An 8 DOF robot in an
environment with four different rooms, see Figure 3e.
The robot moves through these rooms within narrow
passages and arrives at its destination, where it performs
an action (grasps or puts an object down). This robot is
a simulation replica of Kuka YouBot [24].

• 3D Tunnel: This environment comprises a narrow pas-
sage tunnel and a set of cluttered cubes within it, as
shown in Figure 3f. The robot is a 9 DOF articulated
linkage chain that has to pass through a hole in the wall
and encounter obstacles at the other end of the wall.

• PR2 robot environment: The environment has two
pillars and a table as the obstacles where the robot is
required to bypass through the pillars to grasp the stick
kept on the other side, as shown in Figure 3g. The robot
is a simulation replica of the PR2 robot [25] with only
the right-hand arm (14 DOF) and fixed base.

VI. RESULT ANALYSIS

We compare our proposed method with optimal planners
k-PRM* [15] and LazyPRM* [16], with cell decomposi-
tion methods Dynamic Domain RRT [10] and Dynamic
Region-based RRT/PRM [11], [12], and with Sampling-
based RoadMap Trees (SRT) planner SparkPRM [9] which
combines a PRM and RRT appraoch. All results were aver-
aged over ten randomized seeds with an evaluation of 500

trials. The value of η = 1 in Eq. 3. We used the PRM strategy
to uniformly sample configurations within each voxel.

A. Optimal Planners
We consider the value of k = 15 for k-PRM* as derived in

Karaman et al. paper on optimal path planning [15] and the
connection radius as the function of random configuration
nodes in Cspace for both k-PRM* and LazyPRM* methods.

a) Computation Time and Total Nodes: We plot our
results considering the time and total nodes needed to solve
the query as seen in Figure 4 and report that our method
performs faster than the optimal planners and needs fewer
nodes in all the environments except the Cluttered environ-
ment (Figure 4b). k-PRM* achieves the lowest computation
time, and LazyPRM* requires the least number of nodes in
the roadmap. The minimal overhead of our planner in the
Cluttered environment is due to the time consumed to process
topological and geometric information at each voxel. As our
results have shown, our planner improves as the DOF of the
robot increases, and the Cluttered environment comprises a
simple box robot in a uniformly distributed space.

b) Average Path Cost: Table I show the average path
cost with standard deviation (superscript) for all methods.
Compared to the extra time taken by our planner to process
the environments, it still produced the shortest path in all
environments. LazyPRM* failed to finish finding a path in
the Parking Garage and PR2 robot environments within 72
hrs. Since LazyPRM* continually increases the density of its
approximation, the graph search eventually becomes too ex-
pensive and fails to find solutions in complex environments.

TABLE I: Path Cost computed for Optimal Planners

Environments Our Approach k-PRM* LazyPRM*
Parking Garage 11139.5±105.5 11879±118.9 DNF

Cluttered environment 402±12.1 425±26.1 463±17.4

Urban environment 1750±4.8 1823±36.2 1758±14.8

Heterogeneous 3D 2341.4±18.5 3640±19.3 3611±9.6

3D Tunnel 293.3±3.9 337±6.5 407±17.2

Kuka YouBot environment 3601.3±24.5 9405±46.7 9211±20.9

PR2 robot environment 10±0.8 11±1.3 DNF



(a) Parking Garage (3 DOF car)
(b) Cluttered environment (6 DOF
cube)

(c) Urban environment (6 DOF
drone)

(d) Heterogeneous 3D (6 DOF
toroidal plus)

(e) Kuka YouBot environment
(8 DOF)

(f) 3D Tunnel (9 DOF serial
chain)

(g) PR2 robot environment (14
DOF)

Fig. 4: The plots for each environment show the total computation time (in seconds), and the number of nodes in a roadmap recorded for each planner
averaged over 10 random runs. The error bars show the standard deviation. ”*” indicates no result data available for the respective planner or the planner
failed to finish within 72 hrs.

B. Cell Decomposition Methods
We compare our method with two different cell decom-

position strategies that also analyze the properties of Cspace.
We combined the dynamic region sampling strategy from
[11], [12] with RRT and PRM methods and performed
experiments in all seven environments.

a) Computation Time and Total Nodes: Our method
extracts the topological and geometric representation of the
Cspace at each voxel and metrically glues them to maintain
the topological connectivity between the voxel graphs. We
can deduce from Figure 4 that the overhead of approximating
the Cfree information becomes negligible as the complexity
of Cspace increases. Hence, we observe a boost in the
performance of our planner with the lowest computation time
and least number of nodes in six of our seven environments
studied. Via Figure 4b, we report that Dynamic Domain
RRT uses less time than other cell decomposition methods,
and Dynamic Region-based PRM requires fewer nodes to
plan a path in the Cluttered environment. However, Dy-
namic Region-based RRT/PRM were unsuccessful in solv-
ing queries for the Urban environment, Heterogeneous 3D,
and Kuka YouBot environment. All three baseline methods
failed to search a route in the PR2 robot environment, and
Dynamic Domain RRT could not finish finding pathways in
the Parking Garage within 72 hrs.

b) Average Path Cost: Table II shows the average
path cost attained by the cell decomposition methods. We
observe that using the topological and geometric information
preserved at each voxel does not affect the homotopy-
equivalence representation of our roadmaps, and our ap-
proach was still able to obtain edges closer to the Cobst

generating the shortest path in six of our seven environments
compared to other baseline methods. Dynamic Region-based
PRM finds the shortest route compared to other planners in
the Cluttered environment.

As explained in Section IV-C, our method performs valid-
ity checks and convex hull computations within sub-regions
and the distance metric test to find the closest configuration
to the goal for the next voxel polytope. Overall our method
avoids heavy geometric evaluation that requires Voronoi cell
computation, sweep-line validity check, or pruning objects
into holes. These computational methods start degrading
in their performance when dealing with high DOF robots
or cluttered/non-uniform environments. Hence, our planner
becomes more successful than the baseline methods.

C. Sampling-based RoadMap Trees (SRT) Planners
We compare our approach with SparkPRM as it combines

the capability of PRM and RRT methods to find a solution
in an environment similar to ours.

a) Computation Time and Total Nodes: From Figure 4f,
we observe a slight difference in computation time between
SparkPRM and our method, which indicates an improvement
in the efficiency of our planner as it extracts the features
of Cspace. The performance of our method improves as the
complexity of the Cspace increases with importance placed
on the preserved topology information, which influenced
the generation of configurations in proximity to Cobst, thus
creating a better path. Our method uses less time and fewer
nodes to solve the query than SparkPRM in six of the seven
environments. In the Cluttered environment, SparkPRM per-
forms better than our approach in computation time and



TABLE II: Path Cost computed for Cell Decomposition methods

Environments Our Approach Dynamic Domain RRT Dynamic Region-based RRT Dynamic Region-based PRM
Parking Garage 11139.5±105.5 DNF 13647±19.1 16982±130.3

Cluttered environment 402±12.1 419.89±4.5 433.66±5.8 364±16.1

Urban environment 1750±4.8 1761.5±12.9 N/A N/A
Heterogeneous 3D 2341.4±18.5 3483±22 N/A N/A

3D Tunnel 293.3±3.9 336.04±6 337.69±6.1 396±7.9

Kuka YouBot environment 3601.3±24.5 3623±25 N/A N/A
PR2 robot environment 10±0.8 N/A N/A N/A

generates fewer nodes to solve a query, as shown in Figure
4b.

b) Average Path Cost: Although SparkPRM finds the
shortest path in the Cluttered environment, our method
attains convergence to low path cost in the remaining six
environments due to the preserved topological and geometric
information of the Cspace that influences the formation of
edges closer to the Cobst, in Table III.

TABLE III: Path Cost computed for SRT planners

Environments Our Approach SparkPRM
Parking Garage 11139.5±105.5 14915±138.6

Cluttered environment 402±12.1 336±8.3

Urban environment 1750±4.8 1964±30.8

Heterogeneous 3D 2341.4±18.5 2486±24.9

3D Tunnel 293.3±3.9 331±5.6

Kuka YouBot environment 3601.3±24.5 4648±34.8

PR2 robot environment 10±0.8 17.9±1.1

Hence, we can conclude that using the topological and
geometric information of Cspace, our method converges to
a better solution than the tested baseline methods. We also
observe that our approach successfully finds the route from
start to goal position by metric gluing the voxel blocks
without losing the topological significance.

VII. CONCLUSION

The paper presented an incremental path planner that
constructs a simplicial complex at each sub-region of Cfree
and extracts the topological and geometric features locally. It
metrically glues these complexes together while adapting the
PRM and RRT capabilities to solve a query on growing vox-
els in a goal-biased direction. The results compared in three
strategy categories have shown that, with a small overhead,
our algorithm performed better than the discussed sampling-
based methods. Extensions of this work will investigate its
application to kinodynamic systems and physical robots in
unknown tangent space.
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