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Abstract— Failure of any component in a robotic system dur-
ing operation is a critical concern, and it is essential to address
such incidents promptly. This work investigates a novel tech-
nique to recover from failures or changes in the configuration
space while avoiding expensive re-computation or re-planning.
We propose the Minimal Path Violation (MPV) concept to
find the best feasible path with minimal re-configurations. The
algorithm ranks pathways based on visibility, expansiveness,
and cost. We perform experiments with articulated 3 DOF
to 28 DOF robots ranging from serial linkage robots, Kuka
YouBots, and PR2 robots. Our results show that our method
outperforms existing optimal planners in computation time,
total nodes, and path cost while preserving path feasibility in
changed configuration space.

I. INTRODUCTION

Designing an autonomous, fault-tolerant manipulator [1],
[2] requires identifying configurations that can withstand
failures with minimal displacement of constraints while
maintaining the manipulator’s dependability in the event of
partial mechanism failures. Such manipulators are especially
useful in complex, confined, and dynamic environments such
as disaster areas, nuclear disposal sites, and deep-sea or space
exploration. Since these environments are often uncharted
and dynamic, positioning robotic manipulators in optimal
configurations is critical for high fault tolerance and perfor-
mance. Choosing a solution path with fewer configurations
can make fault tolerance more practical since it requires
minor adjustments in the relative configuration when there
are changes in the planning space.

Optimal or sub-optimal motion planning for manipulators
has been extensively studied [3], [4], [5]. Due to the high
dimension of the planning space, sampling-based motion
planning (SBMP) [6] algorithms are often preferred for this
robotic system. RRT and its variants [7], [8] have demon-
strated faster and more computationally viable approaches
for solving high-dimensional motion planning problems in
robot manipulators [9]. However, finding an optimal path in
changing and dynamic planning space using sampling-based
planners may result in longer computation times. It increases
the computational cost of these planners when addressing
failures or any sudden changes in these high-dimensional
robotic systems.

When a motion planning attempt fails, the goal is to
identify the cause of the failure in order to take the appro-
priate recovery action [10], [11]. Geometric and topological
methods have been used to provide proof of disconnection
or infeasibility by decomposing the free space, using alpha
shapes and other approximations of obstacle space [12], [13],
[14]. However, the focus of this paper is not on finding
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the cause of failures but on reacting or recovering from the
changes in the system that occurred due to failures.

This paper introduces a novel algorithm for near-optimal
path planning of a robotic system that focuses on fault
tolerance and recovery applications. To reduce the number
of re-configurations in finding a feasible path, we intro-
duce the novel Minimal Path Violation (MPV) methodology.
MPV ensures that there exists a route that is collision-
free and connects to start and goal positions with minimum
re-configurations required. Firstly, the algorithm constructs
the complete graph of the environment and calculates the
coarsely diverse paths from [15], [16]. Secondly, it prioritizes
these paths using three ranking measurements, i.e., path cost,
the node’s visibility, and the edge’s expansiveness. Thirdly in
the event of any change in the planning space, the proposed
algorithm suggests an alternate path without recomputing
topological information, thereby saving computational costs.
The ranking measures allow the identification of the next
best route in case of a path failure, which does not get
easily invalidated due to changes in the environment. Figure
1 shows the workflow of the proposed algorithm.

Fig. 1: The algorithm generates diverse paths and ranks them using
path cost, node visibility, and edge expansiveness. The points shown
in the (c) in red, orange, and green around obstacles are based on
the configuration violation detected in the new configuration space.

The proposed contribution involves four main components.
1) We introduce a novel formulation of minimal path

violation to compute a feasible path with minimal re-
configurations compared to straight-line paths.

2) We introduce a novel ranking measure that prioritizes
topologically diverse paths to provide minimal path
violation.

3) Our novel path planning algorithm utilizes the ranking
measure to find a near-optimal feasible recovery path
in the event of failure.

4) The contribution includes the theoretical and empirical
proof of the ranking conditions. It helps to establish the
efficacy of the proposed algorithm for path planning in
dynamic environments, especially in events of failures.

II. RELATED WORK

A robot’s placement or configuration can be uniquely
defined by a point in a multi-dimensional space, where each



dimension represents a degree of freedom (DOF). The space
consisting of all possible robot configurations, including
feasible and unfeasible ones, is called the configuration space
(Cspace) [17]. The configuration of a robot manipulator is
typically defined by the set of joint angles, making the
joint space a type of configuration space. However, the
Cartesian parameters of the robot’s end effector do not
typically constitute a configuration due to the multiple so-
lutions to the robot’s inverse kinematics. In Cspace, obstacles
(Cobst) represent unfeasible configurations that could cause
collisions, while the complement of Cobst, Cfree, is the set
of feasible configurations.

A. Diverse path planning
Planning alternative routes in the presence of obstacles

is computationally expensive, which can be a challenge for
autonomous robots. Incorporating path diversity into path
planning allows for a natural fit with the dynamic planning
paradigm. This approach involves generating multiple paths
that lead to the same goal, which helps to minimize the need
for re-planning in the event of obstacles or motion failures
[18], [19]. Recent research has focused on formalizing path
diversity and developing effective methods for generating
diverse paths during a path planning event [20], [21]. In our
previous work [15], we employed a discrete Morse function
[16] to identify critical points on the topological roadmap,
which provide information about different regions of the
Cspace. Later, our algorithm identified the coarsely diverse
paths set incident to these critical points during a single
roadmap generation. In this work, we enhance and modify
our previous approach to identify and rank routes for fault-
tolerant operation in manipulator robots. We improve the
results of our method by incorporating node visibility, edge
expansiveness, and path cost measures.

B. Fault-tolerant motion planning
The motion planning problem aims to determine a

collision-free path, going from a start to a goal configuration,
while also avoiding any stationary obstacles that may be
in the way. The ability to automatically plan such motions
given geometric models of the manipulator and the task is
critical for redundant manipulators. However, motion plan-
ning failures are common due to the PSPACE completeness
of the motion planners and the complexity of the planning
environments [22]. To address these issues, researchers use
two main approaches: 1) causality analysis, which identifies
the causes of planning failures and suggests recovery actions
[23]; and 2) avoidance, which leverages domain or historical
information to classify planning spaces and problems as easy
or difficult [24].

Fabien et al. proposed a polynomial-time algorithm for
culprit detection in a constraint network with the relaxed
version of the geometric part of the Combined Task and
Motion Planning (CTAMP) problem [10]. The algorithm
involves constructing a graph of geometric dependencies
between the actions of unfeasible symbolic plans to extract
sub-sequences of actions that are separately evaluated as
potential culprit sub-sequences. Research in [25] proposed a
fault-tolerant control scheme for robot manipulators based on
active inference of sensory fault. Another notable work pre-
sented in [26] focuses on the Minimum Constraint Removal
(MCR) problem, which aims to remove the fewest geometric
constraints necessary to enable a collision-free path between

the start and goal configurations. Hauser presents an SBMP
algorithm that clusters connected configurations in each
region of the obstacle partition, reducing the number of nodes
in the MCR graph. In comparison, we utilize node visibility
and edge expansiveness to narrow down the re-configuration
search set and prioritize the topological information for
faster re-computation of relative paths for fault-tolerant path
planning. Our approach can be used in conjunction with the
MCR problem, where our algorithm provides the solution
by re-using the roadmap information after a constraint is
analyzed.

Some other approaches perform fault tolerance planning
[27], [28] by classifying and analyzing the planning space
problems based on historical or domain knowledge. In this
work, we do not focus on learning-based fault detection and
instead use the minimum path violation framework to find a
feasible path in the changed Cspace. We define a “change”
in the Cspace as the inclusion or exclusion of Cobst that
invalidates the existing solution.

III. FORMAL DEFINITIONS

In this section, we present Minimal Path Violation (MPV)
framework and three ranking conditions to prioritize the
diverse paths for fault-tolerance operation.

A. Minimal Path Violation (MPV)
Given a sampled graph G of vertices V and edges E, i.e.,

G = {V,E}, such that set V represents the configurations
in the closure of Cfree and set E represents the collision-
free connections between two endpoints u, v ∈ V . Let P be
a set of diverse paths, and PV and PE define the vertices
and edges covered by these paths. We say, a path p is
feasible if PV ⊆ V and PE ⊆ E. Let Q′ be the set
of all violated configurations in changed Cspace, such that
Q′ ⊆ PV. We define the Minimal Path Violation (MPV)
between two endpoints s, g ∈ Cfree.

Definition 1: (Minimal Path Violation) A path p′ is
collision-free and minimal (in the changed Cspace) if and
only if Q′ ∩ PV(p

′) = ∅ and |PV(p
′)| − |PV(p)| is minimum

∀p′ ∈ P, where PV(p) is the set of vertices covered by p, p
is the straight line path between s and g, and |.| represents
the cardinality of the set.

Figure 2 shows a general idea of the MPV problem.
We solve the MPV problem in the changed Cspace using
our ranking measure that assures the minimum number of
vertices gets connected to find a route between the start and
goal position. Our ranking system takes the node’s visibility,
edge’s expansiveness, and path cost to respond quickly to a
changing environment with the next shortest pathway.

Fig. 2: An illustration of an MPV problem in a 2D Cspace where
p is an unfeasible straight line path between s and g. Our ranking
system solves this problem by prioritizing p′ over p′′ such that the
number of nodes difference between p and p′ is minimum while it
is also the shortest path.



Consider S as the Cfree topology-approximated roadmap
with n diverse paths in it, where S ⊆ G and |P| = n. A
roadmap S is feasible if the number of valid paths is larger
than the number of invalid paths in the new Cspace, i.e., (n−
t) > t, where t is the count of the number of invalid paths.
We use the bound of MPV, as stated in Theorem 1, to assess
the validity of roadmap S.

Theorem 1: Given a roadmap S with m valid configura-
tions and r is the lower bound of intermediate configuration
nodes required to connect a path between source Sa and
destination Sb in the Cspace, where Sa, Sb ∈ Cfree; m > r.
Then, the bound for finding the minimal path violation in S
is r∗(m−r)!∗r!

m! .
Proof: Let L be the set of configurations of the shortest

path p, i.e., |L| = r. To invalidate path p in Cspace, the
vertices of L should be arranged such that at least one
configuration c ∈ L is violated or is in collision with Cobst.
So, the number of permutations of getting a configuration
violation that invalidates the path is P (r, 1) = r, refer [29].
For m configurations in S, the combination of finding the
diverse paths with r configurations is C(m, r) = m!

(m−r)!r! ,
refer [30]. Hence, the bound for finding the minimal path
violation for S can be given by P (r,1)

C(m,r) =
r∗(m−r)!∗r!

m! .
We assess the feasibility of the ranked set during recovery

planning (in Alg. 2) using theorem 1. This evaluation aids the
algorithm in determining the specific point at which the MPV
approach becomes incapable of finding feasible solutions.

B. Ranking Measures
In this section, we discuss our ranking measures to pri-

oritize the diverse paths based on the topology properties
of the Cspace, i.e., path cost, node visibility, and edge
expansiveness. We perform these measures on a topology-
approximate roadmap defined in our prior work [31], [16].
From this topology map S, we compute the diverse paths
set P and perform a ranking of the routes via the conditions
described in Proposition 1 - 3.

Proposition 1: (Path Cost) Taking P as the set of diverse
paths, then a path p is given priority if it has the shortest
length compared to the n− t paths.
Recall that n is the total number of diverse paths in P and t is
the total number of invalid pathways. Here, the general idea
of sorting the routes based on their lengths in P is considered,
thus, giving priority to the shortest path with feasibility, i.e.,
from the shortest path length to the longest. A route becomes
the next best alternative if it connects to fewer vertices and
edges than the remaining valid paths in the modified Cspace.
□

Proposition 2: (Node visibility) Let K define the limit
of maximum visibility. If a vertex v ∈ V has j connected
neighbors where j ≤ K and j ̸= 0. Then, we define the
priority of v with the rank score achieved on K – j, i.e., the
higher the rank score means the highest priority.
Here, K defines the maximum number of unique neighbors
a vertex (or a configuration node) can connect, and j is the
number of successful connections made for K connection
attempts. The visibility of v depends on the number of
unsuccessful connection attempts made and computed by
the parameter l = K − j where l > 0. The larger the
value of l, the lower the visibility of the v in the Cspace
(existence in narrow regions). We prioritize the low visi-
bility nodes because they are closer to Cobst, and the path
connecting it will pass at proximity to Cobst. Moreover, the

chances of finding an alternate route through low-visibility
nodes are less than through high-visibility nodes. So, the
process of discarding low-visibility nodes when they become
invalid and transitioning to higher-visibility nodes during re-
configuration becomes simpler through ranking. As shown
in Figure 3, x has a low visibility than y and z. It is, thus,
given higher priority than y and then z. □

Fig. 3: Visibility ranks of vertices. The vertices with low visibility
or lying closer to Cobst, such as x, are ranked higher than vertices
with high visibility (y and z).

Proposition 3: (Edge expansiveness) Let Sa and Sb be
vertices in a roadmap S of the Cfree topology-approximation
graph G. Suppose the shortest unfeasible path between Sa

and Sb in the Cspace has length D. If an edge β connects
two vertices between Sa and Sb and has length h ≤ D,
then the priority of β is determined by the rank score D −
h. Specifically, the smaller the rank score, the higher the
priority of the edge β.

We can justify the proposition as follows. First, consider
a straight line in Cspace connecting Sa and Sb, which need
not be collision-free. The collision-free edges between the
vertices in the roadmap S determine the safe route for the
robot in Cfree. Suppose the length of edges connecting
vertices between Sa and Sb is at most hmax. Then, the
collision-free edges of length h closer to D will need fewer
nodes to form a path than those further away. Hence, longer
collision-free edges are more desirable as they reduce the
number of nodes in the pathway. This property can help
search for the next feasible edge with minimum displacement
from the same vertex. In particular, the priority of an edge
β connecting vertices between Sa and Sb is based on its
rank score D − h. Since D is the length of the shortest
unfeasible path between Sa and Sb, edges with smaller
lengths h < hmax have higher rank scores and lower priority.

To illustrate, consider Figure 4, where the length of the
shortest unfeasible path between Sa and Sb is D, and hU is
the edge between Sa and Sb, hV is between q to Sb, and hW

is between r to Sb along paths U , V , and W , respectively.
Then, during ranking, hU has higher priority than hV and
hW , and the rank score is D − hU . Also, in general, D
always takes length as hU between a start and goal position.
Therefore, the edge expansiveness property helps efficiently
find a feasible path between two vertices in the roadmap by
prioritizing longer, collision-free edges. □

When ranking paths, the priority sequence is determined
by path cost followed by node visibility and edge expansive-
ness.

IV. ALGORITHM DEVELOPMENT

To overcome/recover from the faulty scenario, we perform
two associated steps. First, we apply Propositions 1 - 3 to
rank our feasible coarsely diverse paths. Second, we use the
ranking information to find a valid pathway in the changed



Fig. 4: Ranking of edge expansiveness. It prioritizes longer
collision-free edges in the paths, such as U , over short edges in
V and W . The symbol > refers to the ”greater than” notation.

Cspace realizing MPV framework. These two algorithms
are performed as the post-processing steps to the already
approximated Cfree-topology graph. [31], [16].

A. Ranking diverse paths
Algorithm 1 aims to rank and return a set of coarsely

diverse paths for a given dense graph G, with the aim of
solving a query from start to goal position. The algorithm
uses a combination of topological and geometric information
abstracted from G, as provided by methods introduced in
previous works [31], [16].

To compute the diverse paths, the algorithm employs
the GetPath method (lines 2-10), which generates a set P
of n-distinct paths in S, where the parameter n controls
the number of pathways to identify. Next, the algorithm
computes the visibility of the configuration nodes in S (from
Proposition 2), using the CountNeighbors method (lines 11-
17). The visibility information prioritizes the nodes that are
more likely to be part of high-quality paths in q.

To further prioritize the high-quality paths, the algorithm
creates a priority queue e of collision-free edges with longer
lengths (as per Proposition 3) in lines 18-21. The algorithm
then sorts the set of diverse paths in P based on their path
lengths (as per Proposition 1), using the Sort method (line
24). The paths with the lowest cost are ranked first, with ties
broken by giving importance to the number of high-priority
nodes and then high-priority edges (lines 25-26).

The algorithm outputs a set R of ranked paths that get
used in algorithm 2 for solving queries between the same
start and goal position in changed Cspace. Overall, Algorithm
1 combines our various methods and techniques [31], [16],
[15] to efficiently rank and generate a diverse set of high-
quality paths from a given dense graph.

B. Minimal path violation planning
Algorithm 2 considers the ranked paths set R ⊂ S and the

environment map X of the new Cspace as the input, where
dim(S) ̸= dim(X). Here, dim calculates the dimension of
the space. The Projection method maps the configuration
nodes of dim(S) to dim(X) using transformation matrix I
in lines 3-6.

Ii∗j =

{
1, i = j

0, i ̸= j
; i = dim(S), j = dim(X). (1)

Using the map X , the algorithm evaluates the validity of the
paths in the set R in line 7. The pathway is pruned from R if
the current shortest path is invalid due to new changes in the
Cspace, and the adjacent shortest route from R gets selected
for validation in lines 8-10. When the number of valid nodes
decreases in R ⊂ S, the number of invalid paths increases,
thus, making the roadmap S unfeasible, i.e., R → null. The
increase in the probability of MPV (from theorem 1) for R

Algorithm 1 Ranking n coarsely diverse paths
Input: G: A dense graph comprising of vertices set V and edges set E

where G = {V,E}, Q: query to be solved from start to goal position,
P: set of n-distinct paths, p: vector array of path vertices, n: number
of paths to be computed, K: node-reachability parameter, D: distance
b/w start and goal position, R: set of ranked paths.

1: Let i = 0, P← NULL, p = 0.
2: T = GetTopologyGraph(G); ◁ Refer [31]
3: M = GetCriticalPoints(T ); ◁ Refer [16]
4: S = T

⋃
M

5: while i < n do
6: Q = false
7: p = GetPath(S); ◁ Refer [15]
8: if Q = true then
9: P = P

⊔
p

10: i = |P|
11: q ← NULL
12: for all nodes x ∈ S(V ) do
13: j = CountNeighbors(x, S(V )); ◁ Proposition 2
14: if j ̸= K and K − j > 0 then
15: PushFront(q, x);
16: else if j == K then
17: PushBack(q, x);
18: e← NULL
19: for all edges y ∈ S(E) do
20: h = D − length(y); ◁ Proposition 3
21: e.push(h, y);
22: r ← NULL
23: Sort(P); ◁ Proposition 1
24: for all p ∈ P do
25: r = Rank(p, q, e);
26: R = R

⋃
r

27: return R

decreases the chances of finding a feasible solution in X
which tends towards 0 (line 10). The process continues until
a near-optimal pathway is found in X , else the algorithm
calls a complete planner (like PRM [32], RRT, e.t.c.) to find
a path due to the discretization of the space.

Algorithm 2 Recovery path planner
Input: X: a new Cspace, Sa: start position, Sb: goal position, p: vector

array of path vertices, R: set of ranked paths, Γ: a complete planner.
1: x = dim(X);
2: R = GetRankedPaths(); ◁ Algorithm 1
3: Sa ← Projection(Sa, x);Sb ← Projection(Sb, x)
4: while Sa and Sb not connected do
5: for all p ∈ R do
6: p← Projection(p, x);
7: if p is not valid in X then
8: remove(R, p);
9: if R not null then

10: p = SelectNextPath(R,X); ◁ Theorem 1
11: else
12: Calls Γ(Sa, Sb)
13: else
14: Connect p with Sa and Sb
15: return p

Using Algorithm 1 to rank our diverse path and Algorithm
2 with MPV for recovery, we reduce the re-planning time and
computation cost that we evaluate in Section VI.

V. EXPERIMENTAL SETUP

The experiments were executed on a Dell Alienware
Aurora desktop machine running Ubuntu 20.4 LTS operat-
ing system, and the algorithms were implemented in C++
language, using motion planning library [33]. We used the
RAPID [34] collision detection method during the sampling,
connection, and query stages and used the brute force k-
closest neighbor finding technique [35], the Euclidean dis-
tance metric method, and a straight line local planner for
sampling and connection stages. We performed experiments



in 3 environments with robots (articulated linkage, Kuka
Youbot, and PR2) ranging from 2 to 28 DOF in Cluttered,
Pick and Place, and Object displacement environments, re-
spectively. Figure 5 show the start and goal positions in red
and blue color.

VI. RESULTS

In this section, we discuss the performance of our method
in the modified Cspace and compare its results with optimal
planners, like LazyPRM* [36], RRT*-Connect [7], and In-
formed RRT*-Connect [8]. Here, we take K = 5, whereas D
gets calculated empirically using a distance function within
the algorithm for ranking conditions. We performed a total
of 225 executions to generate roadmaps for each planner in
all three environments, and the results were averaged over
15 runs to get standard deviation values. We used PRM
[32] sampling strategy to sample the configurations in the
environment.

A. Solving MPV problem in changed Cspace
1) Prioritising coarsely-diverse paths: We generate topol-

ogy maps and diverse paths for all 3 environments using 3
DOF articulated linkage robot, 10 DOF Kuka YouBot, and 28
DOF PR2 robot (two arms), respectively. Table I shows the
size of the rank set, the range of path cost, nodes, and edges
for the coarsely diverse paths derived from Algorithm 1. This
table gives the information needed for MPV, including the
minimum and the maximum number of nodes/edges present
in the paths in these environments.

TABLE I: Ranked coarsely diverse paths
Environments Total paths Cost Nnodes Nedges

Cluttered 84 280-546 10-36 14-22
Pick and Place 3 1584-1901 30-96 38-52

Object displacement 2 504-630 12-18 11-17

2) Fault-tolerant planning in changed Cspace: Initially, we
generate and rank various paths for robots with 3, 10, and 28
degrees of freedom (DOF) in their respective environments.
We then introduce dynamic behavior in these environments
by modifying the obstacles’ positions, constraining the ma-
nipulator’s joint angles, or limiting the query evaluation time,
causing the existing shortest paths to become unfeasible and
the planner to fail to identify the same route. Consequently,
our approach identifies an alternative pathway with fewer
DOF to serve as a recovery measure in these environments.
The aim is to find a feasible fault-tolerant solution by
reducing the DOF of the robot in consideration (a subset
of the original problem) for the detected fault in the initial
environment.

a) Cluttered environment: We add two new obstacles
and plan a path using a 2 DOF articulated linkage robot
to recover from faulty Cspace. The placement of two recent
objects invalidates the current shortest path from Figure 5a,
and as a result, our planner looks for the next possible
pathway to connect start and goal positions as shown in
Figure 5d.

b) Pick and Place environment: We add one new obsta-
cle and restrict the joint angle of one of the links (introduces
extra computation time). The initial shortest path of 10 DOF
Kuka YouBot is shown in Figure 5b and the fault-tolerant
pathway planned using 7 DOF Kuka YouBot is shown in
Figure 5e.

c) Object displacement environment: We restrict the
forearm movement of the left hand and limit the query
evaluation to 10 seconds. The faulty scenario of the PR2
robot is captured in Figure 5c, where it is unable to find a
path due to restricted movement of the left hand, and Figure
5f shows the recovery path planned using 14 DOF PR2 robot
(one arm). In the changed Cspace, the right-hand picks both
the sticks, which were initially picked separately by each
hand. Hence, we have two paths planned for the right hand
that performs one stick displacement initially and two sticks
displacement for the changed Cspace.

Table II shows the number of configuration nodes in the
initial shortest path and the new shortest path in changed
Cspace at the time of recovery planning.

TABLE II: MPV solution in new Cspace
Initial Path New Path

Environments Nodes Cost Nodes Cost
Cluttered 10±10.76 280±2.79 13±9.45 286±3.4

Pick and Place 30±5.11 1584±11.23 36±2.76 1848±9.83

Object displacement 12±1.34 504±1.0 18±1.98 630±0.67

From Tables I and II, we observe that the re-configuration
of nodes during recovery planning maintains the minimality
of the MPV problem. Our method selects the next best route
within the ranked paths with a minimum re-configuration of
2 to 6 nodes in all 3 environments. Hence, we can conclude
that our method efficiently solved the MPV problem to find
a valid path by using the ranking measure that guaranteed
minimum node re-configuration from the invalid pathways.

Table III shows the displacement distance between the
initial and re-planned paths in the changed Cspace. We
compare the results of our method with optimal planners
LazyPRM*, RRT*-Connect, and Informed RRT*-Connect.
We use the Hausdorff distance [37] to measure the distance
between two paths. We observed that our method identi-
fies a feasible pathway in new Cspace with the smallest
displacement distance between initial and re-planned routes
compared to the paths generated by other methods in all 3
environments.

We conclude that using the MPV probability and ranked
diverse paths information can aid in finding the next feasible
solution with minimum re-configurations.

B. Analysing the Recovery Solution
The goal is to ensure a nearly optimal solution while

recovering from a faulty scenario. We evaluate our recovery
solution against optimal planners in time, cost, and nodes
to analyze resource consumption. Using Algorithm 1 and
2, we compute diverse paths and re-use information across
three environments through a ranking system. Our plan-
ner’s computation time includes roadmap generation, rank-
ing, and recovery evaluation. We compare our results with
LazyPRM*, RRT*-Connect, and Informed RRT*-Connect, in
initial and changed Cspace, taking average values for planned
and re-planned roadmap nodes and path cost. Our method,
as seen in Figure 6, outperforms in computation time and
path cost without the need to re-generate a roadmap while
it generates more nodes than RRT*-Connect and Informed
RRT*-Connect due to building a complete graph of Cspace.
LazyPRM* failed to find a path for the PR2 robot due to
query resolution, while Informed RRT*-Connect failed to
provide valid configurations within the ellipsoidal curve for
Kuka YouBot and PR2 robots (computed from [38]).



TABLE III: Distance b/w initial and re-planned paths

Environments Our Approach LazyPRM* RRT*-Connect Informed RRT*-Connect
Cluttered 1.07±0.08 2.68±1.06 2.02±0.95 1.27±0.27

Pick and Place 13.39±0.14 18.85±1.99 16.63±1.32 DNF
Object displacement 0.01±0.007 DNF 0.08±2.65 DNF

(a) Cluttered (b) Pick and Place (c) Object displacement

(d) (e) (f)

Fig. 5: Figures (a) and (b) show the initial paths for 3 DOF articulated linkage robot and 10 DOF Kuka YouBot, respectively. Figure
(c) shows the faulty scenario for the PR2 robot with a restricted left hand. Figures (d), (e), and (f) show fault-tolerant paths for 2 DOF
articulated linkage robot, 7 DOF Kuka YouBot, and 14 DOF PR2 robot, respectively.

(a) Computation Time (b) Path Cost (c) Total Nodes

(d) Path Nodes (e) Minimum Clearance (f) Path Smoothness

Fig. 6: The computation time takes into account the total time taken to compute a path in the initial and the new Cspace. We take the
average of planned and re-planned roadmap values for the path cost, the total number of nodes, clearance, smoothness, and path nodes.
The ”x” in the plots refers to DNF (did not finish).

a) Path Metric Evaluation: We also evaluate the path
metrics of the initial and new paths by comparing the
average number of nodes in the routes, the average minimum
clearance from the Cobst, and the deviation of the new

pathway from the initial path using smoothness measure (in
radians). Figures 6d and 6f show that our method-planned
optimal pathways have fewer nodes and minor deviations in
all environments compared to other planners. In Figure 6e,



we noticed a smaller clearance in the Cluttered environment
and a higher clearance value for Kuka YouBot and PR2 robot
for our planner, which shows its ability to adapt to safety
measures in high-dimensional Cspace.

Overall, we saw a noticeable enhancement in the re-
planning time and computation cost for fault-tolerant scenar-
ios. It is worth noting that the complexity of the environment
or frequent displacement of Cobst can increase the likelihood
of MPV bound and its vulnerability to failures.

VII. CONCLUSION

This work proposes a novel algorithm to find a solution
for fault tolerance and recovery in dynamic planning envi-
ronments. We introduce the Minimal Path Violation (MPV)
concept to efficiently find a feasible solution with mini-
mal re-configurations in the changed Cspace. Our approach
utilizes ranking measures based on node visibility, edge
expansiveness, and path cost to swiftly adapt to environ-
mental changes and minimize the need for re-planning. Our
results demonstrate that by reducing re-planning time and
limiting validity checks to ranked pathways, our method
surpasses the optimal methods in fault-tolerant scenarios.
Future work includes comprehensive comparisons with other
fault-tolerant planning methods and practical applications on
physical robotic systems.
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