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Abstract—Intrinsically disordered proteins (IDPs) play vital
regulatory roles in biology, emphasizing the significance of
understanding their conformational behavior and interaction
mechanisms during protein-ligand or protein-protein interac-
tions. However, IDP analysis becomes difficult due to the lack
of a stable structure. In this work, we investigate the binding
behavior of an IDP using the surface information of the in-
teracting protein complex. Our algorithm extracts the protein
surface model’s topological and geometric features and predicts
a geometrically favorable binding pose for an IDP around it.
A transition path is planned to the predicted bound position
to help evaluate the RMSD deviation in the IDP conformation
structure. In our results, we use the Zernike descriptor metric to
examine the structural homology of the binding pose and analyze
the molar Gibbs free energy (binding affinity) of experimental
conformation.

Index Terms—Intrinsically Disordered Proteins, Geometric
features, Binding behavior.

I. INTRODUCTION

Intrinsically Disordered Proteins (IDPs) are involved in
many biological processes, such as cell regulation and sig-
naling, and their malfunction gets linked to severe pathologies
[1]–[3]. Understanding the functional roles of IDPs requires
studying their interactions with other proteins, which is very
challenging and needs a tight coupling of experimental and
computational methods. In contrast to structured/globular pro-
teins, IDPs cannot be represented by a single conformation,
and their models must be based on ensembles of confor-
mations representing a distribution of states that the protein
adopts in solution. The investigation of IDP interaction with
structured/globular proteins is indispensable for understanding
many biological mechanisms [4]. In terms of applications,
understanding such molecular interactions is essential for drug
design in pharmacology or protein engineering in biotechnol-
ogy.

IDPs do not have distinct, well-defined secondary and ter-
tiary structures because of their remarkable backbone flexibil-
ity [5]. During the binding of an IDP to a macromolecule (usu-
ally another protein), large interfaces get involved, resulting
in specific but comparatively weak interactions. IDPs found
in bacteria to higher living organisms have many occurrences
in eukaryote groups. They are prevalent in various human
diseases and enriched in cardiovascular disease, diabetes,

cancer, and neuro-degenerative disease-related proteins [6].
Pathogens like Plasmodium Falciparum (PF) are among the
list of bacteria that inflict damage to the human immune
system and are responsible for most malaria-related deaths
[7]. We consider the human cardiovascular, immune system,
and PF proteins to study and analyze the binding behavior of
IDPs in structure-based molecular interactions.

Based on the interaction of bio-molecules with each other,
Molecular Dynamics (MD) simulations assist in measuring
how every atom in a bio-molecule transforms over time,
showing differences or similarities between conformations.
The most widely used distance measure is the root-mean-
squared-deviation (RMSD). Given two bio-molecular confor-
mations represented as vectors of the Cartesian coordinates
of their atoms, an RMSD is the square root of the average
squared distance between the corresponding atoms. During
protein-protein interactions (PPI), the IDP transforms into
different possible conformations to bind with globular protein
underlining the deviation in its structure at the time of binding.
Research has shown that RMSD plots quantify the structural
inspection of experimental binding conformation and help
capture the structural change that initial conformation has
undergone [8], [9]. However, insufficient data on an IDP can
lead to under-determined structural possibilities with large
RMSD values. Hence, developing a strategy to understand the
structural properties of IDPs at the time of binding can provide
new ways for biological probes to examine the functions of
IDPs.

The intrinsic disorder poses a challenge for both experimen-
tal analyses of the conformation and computational modeling
due to the lack of stable structure. Several structural analysis
approaches have emerged as a new tool to capture molecu-
lar surface patterns between proteins from a given database
[10]–[12]. Work in [13], [14] showed the application of a
3D Zernike descriptor that captures the 121 scalar invariant
features defining the protein structure. Using this information,
one can determine the changes in the shape of the bio-molecule
if the position of atoms or residues changes. We apply this tool
to validate the molecular structure homology between model
conformation and the predicted experimental conformation of
the IDPs.

Contribution: We propose an approach that extracts the



topological and geometric properties of the globular protein
surface to predict the possible IDP conformation ensembles
around it. To the best of the authors’ knowledge, this is the first
work that uses geometric features of protein surfaces to sample
IDP conformations in the conformation space. Our algorithm
computes RMSD values of the predicted conformations to
analyze the transformation in the structure of IDP from its
initial molecular pose. Using the geometric information, it then
identifies the suitable binding pose on the globular protein sur-
face to plan a feasible trajectory from the start conformation to
the binding conformation using our incremental path planner
[15]. Figure 1 shows an overview of our workflow.

We perform experiments for six globular proteins inter-
acting with five IDP molecules in the conformation space.
We consider the tertiary structure of the globular proteins,
ranging between 173-1544 residues, as a static body and the
rigid global body of IDPs as a moving object. Our results
show structural homology between the predicted geometrically
favorable binding pose and the initial conformation of IDP and
report good binding affinity for the experimental conformation.

II. RELATED WORK

A. Protein-protein interactions

An important area of study includes understanding how a
protein binds to another protein’s active site and what confor-
mational changes both molecules undergo during docking to
the active site or its exit from it. Such information allows for
predicting the possibility of an association between protein-
protein pairs, the strength of this association, and the protein
activity level. In protein-protein interactions, geometric and
topological features of the protein manifold play important
roles. Especially for finding a suitable interaction site, [16],
where the bio-molecules bind to the protein regions with
potential coherence of matching (concave) curvatures. Several
works in [17]–[19] studied and investigated the biological sig-
nificance of targeting PPI for chemical biology and therapeutic
intervention.

Recently, the topology of protein bio-molecule has shown
to be surprisingly effective in simplifying biomolecular struc-
tural complexity attracting attention to a better understanding
of biomolecular behavior during protein-protein interactions.
Work in [20] proposed a set of topological methods to exam-
ine possible biases introduced in protein-protein interaction
network data. Menglun et al. in [21] presented a topology-
based network tree to predict PPI using convolutional neural
networks (CNN). They characterized PPIs using an element-
and site-specific persistent homology. Similarly, the authors
in [22] introduced an ensemble learning approach for PPI
prediction that integrated multiple learning algorithms and
different protein-pair representations. Unlike the discussed
strategies, we utilize the topological information of the protein
surface to extract the geometric features that help predict the
IDP conformation ensembles.

B. Studied biological mechanisms of IDPs

Studying the conformation of highly dynamic IDPs is a
challenge in structural biology [23]. Nuclear Magnetic Res-
onance (NMR), often used in the study of IDPs [24], is a
versatile spectroscopy method for studying proteins that, im-
portantly, do not require crystallization. However, NMR spec-
tral data from IDP ensembles have provided conformational
constraints. The NMR-constrained molecular dynamics (MD)
[25] simulations need multiple copies of the protein (known as
replicate exchange MD) to generate possible structural models
which fail to ensure the validity of the result regardless of
the method used to sample the conformations using NMR
data. Work in [26] used NMR to characterize the structure
and dynamics of IDPs in various functional states and envi-
ronments. It describes the NMR parameters of the structural
ensemble to quantify the conformational propensities of IDPs
and discusses the challenges associated with obtaining struc-
tural models of dynamic protein-protein complexes involving
IDPs. Researchers have used the combination of molecular
dynamics simulations and circuit topology (CT) to analyze the
biological behavior of a human androgen receptor with a large
N-terminal domain (AR-NTD) [8]. The method constructed
the circuit topology of a potentially charged bio-molecule
and analyzed the fluctuations of the chain using the root-
mean-square-fluctuations (RMSF) and RMSD metrics. With a
similar idea in this work, we use the surface topology to extract
the geometric features and analyze the structural arrangements
of non-charged bio-molecule using RMSD.

C. Sampling Based Motion Planners (SBMP)

A particular domain of molecular modeling relates to the
prediction of the bound structure of protein-protein complexes;
this problem is usually addressed with computational meth-
ods. The method is required to accurately predict the 3D
conformation of the bio-molecule upon binding to the target
receptor. A new research area has tried applying robotics-based
motion planning techniques to this problem [27]–[30], where it
randomly samples alternative conformations, in consideration
to the position and orientation of the bio-molecule inside
the receptor’s binding cleft and plans a feasible path to the
binding conformation. The space under which the degrees
of freedom (i.e., the number of parameters, like residues or
C-α atoms, needed to describe the pose) of a bio-molecule
explored is called conformation space and the regions free of
all internal and external constraints are called Cfree space in
the conformation space.

In this work, we apply our algorithms [15], [31], [32] to
perform a random exploration of the IDP’s rotational and
translational degrees of freedom, without exploring its confor-
mational flexibility, i.e., rigid docking. The approach utilizes
the topological and geometric properties of the protein surface
to examine the geometrically suitable structure arrangement of
an IDP around a protein receptor and plans a feasible path to
the predicted binding pose.



Fig. 1: Work flow of our approach.

III. METHODOLOGY

A. Background Definitions

We discuss some of the mathematical concepts used in our
algorithm to extract the topological and geometric features of
the protein surface.

Definition 1: (Abstract Simplicial complex) An abstract
simplicial complex K, i.e., a collection of sets closed under
the subset operation, is a generalization of a graph useful in
representing higher-than-pairwise connectivity relationships.

The elements of the set are called vertices, and the set itself
is a simplex. The vertices refer to IDP conformation in the
conformation space.

Definition 2: (Vietoris-Rips complex) Given a set S of points
in Euclidean space E, the Vietoris-Rips complex R(S) is the
abstract simplicial complex whose k-simplices are the subsets
of k + 1 points in S with diameter that is at most ε.

In this work, the protein surface is modeled as a static
object. S is the set of all IDP conformations in the simplicial
complex R(S). These conformations are generated at a radial
distance 2ϱ away from the surface to avoid collisions, such
that S ⊆ Cfree. We take ϱ as the diameter of the circum-
scribed circle of the IDP bio-molecule. Considering the above
parameters, we define the discrete Morse function as follows.

Definition 3: Let D be the Euclidean distance function that
measures the distance between the point x ∈ Cfree and the
nearest point y on the protein surface P , that is, D(x) =
miny∈P ∥x− y∥.

Definition 4: Let Γ(y, ϱ) be a density function where ϱ >
0 and y be the point on the protein surface. The function Γ
counts all neighbors close to y in S within distance ϱ.

Definition 5: Let f be a discrete Morse function on R(S)
restricted to the vertices of the Vietoris-Rips complex. We
formally define f at any point in conformation space by

f(x) = D(x) · Γ(y, ϱ). (1)

Please refer to [32] for our expanded definitions and theorems.
Definition 6: (Critical points) The set of critical points is

defined as the set of non-degenerate points on the surface of
protein when the given discrete Morse function f reaches its
extreme values, i.e., local minima or maxima.

Definition 7: (Feasible critical points) This set is defined as
all possible IDP conformations in S at a radial distance of ϱ

from a critical point on the protein surface. In other words, it
is the union of intersections of vertices in S within the metric
balls of radius ϱ centered at some critical point.

We perform steps from [31] to generate a simplicial complex
R(S) that captures the topological structure of the protein sur-
face, i.e., vertices, edges, and triangles. We apply the discrete
Morse function from [32] on the same simplicial complex
to extract the critical points information of the surface. The
discrete setting of Morse theory avoids the overhead of dif-
ferential geometry, thus, reducing the computation complexity
for high dimensional structures.

B. Root-Mean-Square Deviation (RMSD) metric

Root-Mean-Square deviation (RMSD) is the average dis-
tance measured between the two superimposed protein struc-
tures. This method measures the structural similarity/deviation
of one protein with another or between two conformations
of the same protein. The easiest way to compute RMSD is
using the dihedral angle metric of the protein bio-molecule.
Although the gradient of the dihedral RMSD is easy to
compute, Cartesian RMSD gives a better measure of structural
difference. The reason is that the dihedral RMSD does not
capture the effect that perturbations of middle dihedral angles
in a chain structure entail much larger structural changes than
those of terminal angles. Hence, we use Cartesian RMSD to
measure the structural deviation in this work. Given a N atoms
protein bio-molecule, the RMSD between two conformations
x and y is

RMSD(x, y) =
1

N

N∑
i=1

∥xi − yi∥2, (2)

where y is the predicted conformation and x is the model con-
formation of the same protein. Each conformation consists of
both translation and rotation coordinates of the bio-molecule.

C. IDP conformation transformation during PPI

Algorithm 1 constructs a simplicial complex around the
protein surface by sampling and connecting IDP conforma-
tions in method ConstructComplex. On satisfying the sam-
pling condition from [31], the algorithm performs topological
collapse to remove redundant topological information, i.e.,
vertices and edges, and provides a skeleton of the simplicial
complex around the protein surface in line 3, i.e., a surface



mesh. It applies discrete Morse function f from [32] to this
simplicial complex to identify the local maxima (protrusions)
and minima (cavity) curvatures of the protein surface in line
4. The identified critical points are the highest and the lowest
peak points on the surface at which function f reaches its
extremum.

Algorithm 1 Path planning to suitable binding pose
Input: P : Protein surface model, R: A planned pathway to the

binding site, s: initial IDP conformation, H: set of closest IDP
conformations around the protein surface, g: suitable binding
pose.

1: Let R← {ϕ}.
2: S ← ConstructComplex(P ); ◁ Refer Def. 2
3: TopologicalCollapse(S); ◁ Refer [31]
4: C ← IdentifyCriticalPoints(S); ◁ Refer Def. 5, 6
5: F ← GetFeasiblePoints(S,C); ◁ Refer Def. 7
6: for all x ∈ F do
7: Compute RMSD(s, x)
8: for all c ∈ C do
9: if x closest to c then

10: H[x] = distance(x,c)
11: end if
12: end for
13: end for
14: g = ∀x∈Hmin(H)
15: R = PlanPath(s, g) ◁ Refer [15]
16: return {S

⋂
F,R}

The algorithm extracts the feasible critical points at radial
distance ϱ from the identified critical points of the protein
surface in line 5. These conformations are in close proximity
to the protein surface and are part of a simplicial complex
R(S), refer to Def.7. The method computes RMSD from Eq.2
for the predicted IDP conformations of extracted geometric
information map, line 7. Of the predicted conformations, a ge-
ometrically favorable binding position of the IDP gets selected
with the conformation closest to protein surface curvature in
lines 9-14. Finally, a path is planned for the IDP from the
start conformation to the binding pose conformation using our
method from [15] on taking the predicted IDP conformations
as waypoints, in line 15. As a result, our algorithm outputs
an extracted geometric information map consisting of critical
points, feasible critical points (predicted IDP conformations),
and a pathway from the start conformation to the binding pose
conformation.

IV. EXPERIMENTAL DATA

We obtain protein data from the protein data bank
(PDB) [33], [34] and construct their tertiary structure us-
ing CHIMERA [35]. We obtain IDP data from PDB and
AlphaFold Protein Structure Database (AlphaFold DB) [36].
We consider six proteins and five IDP bio-molecules to
study and understand the biological binding mechanism of
IDPs using protein surface geometries. The high-dimensional
surface models of proteins represent a stationary rigid body
in the conformation space. Figure 2 shows the graphical
representation of 7A7H protein, its high-dimensional surface
model, and the IDP conformation ensembles around it.

The proteins selected include three Plasmodium Falciparum
(PF) pathogen proteins, i.e., 1SQ6, 1TQX, and 3NTJ, and
two human cardiovascular proteins, i.e., 7A7H and 4JKQ, and
one human immune protein (2FCB). PF is responsible for
most malaria-related deaths and forms part of our ongoing
research into identifying feasible protein drug targets. The high
mutational capacity, coupled with the changing metabolism
of the pathogen, makes the development of malaria drug
treatments an evolving problem. In this work, we are interested
in studying and analyzing the behavior of PF pathogens in the
PPI network. Hence, these proteins were selected as they are
the potential targets for malaria inflicts.

We selected 4ZLX (106 residues), 5EJW (91 residues),
and 7KPI (142 residues) proteins as IDP based on their
high disorder behavior shown in the protein feature view
plot available on the PDB database. The other 2 IDP bio-
molecules, AF-I1E4Y1-F1 (117 residues) and AF-P59773-F1
(190 residues), from AlphaFold DB, are of mus-musculus
and homo sapiens species, respectively. The mean per-residue
confidence score (pLDDT) for AF-I1E4Y1-F1 is 48 and for
AF-P59773-F1 is 59. The pLDDT measure estimates whether
the predicted residue has similar distances to neighboring C-
α atoms (within 15 Å) in agreement with distances in the
true structure and is scored between 0 and 100. The score
assesses the local model quality of the structure, i.e., a lower
score refers to the existence of larger disordered regions in a
bio-molecule. Figure 3 shows a random combination of IDPs
interacting with studied protein surface models.

V. RESULT ANALYSIS

We performed experiments on a Dell Optiplex 7040 desktop
machine running OpenSUSE operating system and developed
algorithms in C++ language. The results were evaluated for all
IDPs with each globular protein for geometric feature extrac-
tion, RMSD computation, path planning to binding position,
and binding affinity measure, i.e., a total of 150 trials. In
this work, we do not change the atoms/molecules or dihedral
angles of the IDPs but take the 3D structure of the global rigid
body frames to calculate Cartesian RMSD in the conformation
space, as discussed next.

A. Computing structural binding transformations

We evaluate the predicted conformation ensembles of IDPs
using the RMSD formula from Eq.2 and report the global
rigid body transformation (rotation-translation) measured at
each IDP conformation in Angstrom (Å), as shown in Figure
4. We align the IDP conformation structures to their original
start conformation structure to calculate the translation and
rotational deviation in the IDP model that help minimize the
Cartesian RMSD values. Our method predicts varying results
of the conformation ensembles for IDPs in the conformation
space of six proteins. Since the structure of these IDPs is large,
the global rigid body frames of structural re-arrangements
score between 1 and 10.

We observed that the IDP conformation transforms into dif-
ferent ensembles (i.e., translation and rotation) as it navigates



(a) 7A7H protein (b) Surface model (c) IDP conformation ensembles

Fig. 2: The figure shows the multiscale surface model of the 7A7H protein and the predicted IDP conformations around
detected geometric features (critical points) of the protein surface. The geometric information map provides the view of the
4ZLX bio-molecule conformation around the surface model.

(a) 1SQ6 (4ZLX) (b) 1TQX (5EJW) (c) 2FCB (7KPI)

(d) 3NTJ (AF-I1E4Y1-F1)
(e) 4JKQ (AF-P59773-F1) (f) 7A7H (5EJW)

Fig. 3: A random combination of a globular protein surface model and an IDP was captured, from the experimental analysis,
with IDP names mentioned in the brackets and IDPs shown in red.

to a geometrically favorable interaction pose in all six proteins.
Hence, we analyzed that using the geometric information of
protein surface, it is still possible to predict diverse structural
arrangements of IDPs around the proteins to find the closest
interacting binding pose between two bio-molecules.

B. Planning path to suitable binding pose

We study the total time taken (in seconds) for all IDPs in all
six globular protein conformation spaces for geometric feature
extraction and path planning to binding pose, as shown in
Figure 5. Geometric feature extraction time evaluates the time
taken to extract features and predict feasible conformations
around the globular protein surface. The path planning time
inspects the total time taken for an IDP to move feasibly from
start conformation to binding conformation in the vicinity of
the protein surface. The structure and size of globular proteins
like 1SQ6, 1TQX, 2FCB, and 7A7H are smaller and more

compact. So, planning a path around these proteins takes
much lesser time than 3NTJ and 4JKQ proteins. However, the
disordered regions of the IDPs affect the feature extraction
time required to find the geometric structural alignments
around globular proteins. The uncertain behavior of IDPs
around the studied proteins helps us analyze the feasibility of
their interaction with a particular protein, that is, how easily
they align around a protein structure for an association. The
path planning time helps us analyze the locomotion of the IDP
around the protein to find the most suitable binding pose for
their rigid body structure. We provide this information to help
understand the time required to obtain the feasible binding
pose and the surface information of the protein as relevant to
future biological studies.

Figure 6 shows screenshots of the planned path for the
5EJW IDP around the 7A7H protein surface to the binding
pose conformation. The different view angles reflect the mo-



(a) 1SQ6 (b) 1TQX (c) 2FCB

(d) 3NTJ (e) 4JKQ (f) 7A7H

Fig. 4: The plots show measured RMSD for all predicted IDP conformation ensembles around the protein surface model.

(a) 1SQ6 (b) 1TQX (c) 2FCB

(d) 3NTJ (e) 4JKQ (f) 7A7H

Fig. 5: The total time taken (in seconds) to extract geometric features and plan a path for all IDPs in each protein’s conformation
space.

tion of the IDP bio-molecule around the protein surface using
the predicted IDP conformations generated by our method.

C. Structural analysis of binding conformation

We analyze the structural similarity of our binding goal
conformation structure with the model structure of IDP at the
initial conformation to understand the changes or movement
of the atoms that happen internally within a bio-molecule or
externally for a body model. We first examine the external
transformation of the identified IDP binding conformations for
each protein, aligned along the initial conformation structure,
using the RMSD value, as shown in Table I. It helps us analyze
the displacement or deviation of the IDP body model from its
initial form. We observe that the binding pose conformation
showed 60-90 % transformation in the structure from its

initial model conformation, i.e., the translation and rotation
displacement of the body model from its initial pose, for all
IDPs in all proteins’ conformation space.

TABLE I: RMSD values computed for the predicted binding
pose structure.

1SQ6 1TQX 2FCB 3NTJ 4JKQ 7A7H
4ZLX 6.8 6.8 7 9 7.7 6.9
5EJW 6.7 6.5 6.7 8.8 7.4 6.6
7KPI 6.8 6.5 6.9 9.2 7.6 6.8
AF-I1E4Y1-F1 5.8 5.9 6.3 8.3 7 6.2
AF-P59773-F1 6.2 6.4 6.6 8.7 7.3 6.5

We also validate the structural resemblance of the binding
pose conformation with the IDP model conformation structure
using 3D-SURFER [12] to compare and analyze the difference



(a) Front view (b) Side view (c) Top view

Fig. 6: The path planned for 5EJW IDP around the 7A7H protein surface model using the geometrically favorable conformation
ensembles. The start conformation is in red, and the binding goal position is in dark blue.

in protein structures internally. We input the PDB files of
both the model structure and the predicted geometrically
favorable binding pose structure to the 3D-SURFER tool.
The tool provides the difference in protein structures using
Zernike feature vectors. It helps us evaluate the displacement
of atoms/molecules or residues of the protein structure and the
dihedral angles between them. The computation of structural
resemblance between the two protein models gets calculated
as

Psim =

∑121
1 Zbinding∑121
1 Zinitial

, (3)

where Psim denotes the percentage of resemblance in struc-
ture, Zbinding denotes the Zernike invariant (121 scalar values)
of the predicted binding structure, and Zinitial refers to the
Zernike invariant of initial model structure. We observed that
our predicted IDP binding goal conformations have a 100%
structure resemblance with the initial model structure for all
IDPs in each globular protein’s conformation space. Thus
proving no changes in the positions of atoms or residues
within the IDP structure, i.e., our method preserves the internal
backbone structures of the IDPs.

D. Binding Affinity of experimental conformation

We inspect the binding affinity of our IDP binding pose
conformation with the known binding affinity for a ligand
for all six proteins. We use the molar Gibbs free energy ∆G
(binding affinity) to determine the relevance of the binding
pose. Gibbs free energy is a thermodynamic potential that
measures the capacity of a thermodynamic system to do maxi-
mum or reversible work at a constant temperature and pressure
(isothermal, isobaric) [37]. The protein binding occurs only
when the change in Gibbs free energy ∆G of the system is
negative, i.e., when the system reaches an equilibrium state at
constant pressure and temperature. Table II shows the binding
affinity of the predicted IDP binding pose for each protein
compared to the protein’s known binding affinity for a ligand.

We observe that our predicted IDP conformations show
a higher binding affinity for all proteins than their known

binding affinity for a ligand. We see that the geometrically
feasible binding pose with good binding affinity becomes use-
ful for interesting biological studies/findings to help investigate
the interaction mechanism of IDPs with unknown or known
protein bio-molecules. We conclude that our approach success-
fully captures the geometric features of the protein surfaces
and plans a path for IDP biomolecule to the geometrically
favorable binding pose showing a higher affinity than ligands.
Thus, showing the significance of our approach for further
biological studies.

VI. DISCUSSION AND FUTURE WORK

The paper presented a framework that uses the topological
and geometric information of the structured protein surface to
examine the possible IDP binding behavior. The work ana-
lyzed the deviation in the experimental conformations of IDP
with its model structure conformation using the RMSD metric
and reported the computation time taken to extract the surface
features and plan a transition path. Our experiments show that
our method predicts a geometrically favorable binding position
for the IDPs around the protein surface models for rigid
docking, showing good binding affinities. We also validate the
structural homology of binding conformation with the IDP’s
initial conformation showing a 100% similarity. This work
serves as the first step toward the further analysis of IDPs and
their interaction with other bio-molecules, given the geometric
and topological representation of these bio-molecules. We plan
to use a dynamically flexible model of IDPs to study its
interaction with other proteins in our future work.
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