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Abstract— We present a topological method for finding
coarsely diverse pathways. The use of pre-computed paths for
online planning in a dynamic context reduces the overhead
of re-planning alternate routes. Our algorithm applied the
notion of discrete Morse theory to identify critical points
incident on the obstacles and used this information to identify
and return a diverse set of coarse paths. Three sampling-
based planning approaches are converted to topology-aware
planners and compared to another that employs the SPARS2
path planning algorithm. We report on the number of coarse
pathways found, computation time, and average path length
and show that our approach outperformed previously published
path diversity algorithms.

I. INTRODUCTION

Path planning is needed to successfully maneuver au-
tonomous robots while avoiding obstacles and banging into
walls in a small passage. Many sampling-based algorithms
are used in motion planning, including RRT (Rapidly Explor-
ing Random Trees) [1] and Probabilistic Roadmaps (PRM)
[2]. Because these methods create random samples in space,
they are easier to implement than discrete approaches like
A*. Due to the randomness of these sampling-based pro-
cedures, probabilistic completeness is the best that can be
accomplished. For every failed path due to an unexpected
new obstacle, a re-computation is required with just a prob-
abilistic completeness guarantee and large time overhead.

Unfortunately, little effort has gone into providing robots
with valid paths (alternative routes). Kavraki et al. termed
this as path diversity in [3]. It saves time and delivers more
information on space’s properties and topology. It can help
self-driving cars by offering alternate routes from a single
map if one becomes invalid, and it also helps to service
robots like the Roomba [4].

We present a new approach to identify and provide path
sets during a single roadmap generation. We achieve this by
applying discrete Morse theory on the topological roadmap
to identify critical points which contain information about
different regions of the space. Figure 1 gives an illustration
of our approach. Using this information, we identify different
path set incidents to these critical points and formally define
path diversity for our work. We perform experiments in the
configuration space (Cspqce) Using different sampling meth-
ods to generate our dense map, i.e. Uniform [2], Gaussian
[5] and Bridge-Test [6] and provide analysis of the path sets
returned. We compare our method with a baseline method
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Fig. 1: Proposed Approach

presented in [3]. Our results show that we can generate more
diverse paths with reduced path length. We also show that
our algorithm can provide a set of coarsely-diverse paths that
can be distinguished based on critical points information.
This capability can have application in real-world scenarios
where alternate energy-efficient routes are needed.

II. RELATED WORK
A. Motion Planning Preliminaries

A robot’s placement, or configuration, can be uniquely
described by a point (x1,x2,...,x,) in a n dimensional
space (z; being the ith degree of freedom (DOF)). The
space consisting of collection of feasible configurations
(Cfree) and unfeasible configurations (Cops¢) of robot is
called configuration space (Cspqce) [7]. The motion planning
problem can be defined as finding a valid solution (e.g.,
collision-free and satisfying all joint limit and/or loop closure
constraints) in Cyre. on successfully connecting start and
goal configurations [8].

B. Sampling Based Motion Planning

A number of strategies have been proposed to modify the
sampling strategy to increase the number of nodes sampling
in narrow and difficult regions of the environments. Uniform
sampling method [2] generates nodes uniformly at random
in Cspqce retaining valid ones, however, show inability to
sample in narrow passages efficiently. Obstacle-Based PRM



(OBPRM) [9] samples configurations near C,ps; surfaces
either by pushing configurations to the C,ps; boundary or
by finding surface intersections of randomly placed line seg-
ments. Even if OBPRM excels in narrow passages, it can be
expensive because it requires many validity tests. Gaussian
[5] and Bridge-Test [6] filter samples with inexpensive tests
to find samples near C,ps; boundaries or directly in narrow
passages, respectively. However, both methods perform the
same basic sampling as uniform random sampling and suffer
from needing many samples to find one in a narrow passage.
We use these auxiliary samplers to generate the topological
maps for our approach except OBPRM, which continuously
failed to generate a dense map to meet our stopping criteria.

C. Prior Work in Path Diversity

Knepper and Matthew in [10] introduced an important
concept about path set as being a collection of feasible
paths and their corresponding control sequences. A path
set contains high path diversity if there is an improved
performance in the presence of obstacles and goal-seeking
behaviors. The importance of path diversity cannot be over-
emphasized, and the ability of a motion planning algorithm
to return path sets, thus, giving the robot or a self-driving
car choice of alternative paths reduces complexity and re-
planning scenarios. Voss et al. in [3] proposed an algorithm
that returned low-cost diverse paths from a sparse graph by
calculating the closest distance between path curves using
Fréchet distance measure. However, the method required
tuning of two parameters to return paths set.

For a graph with a broad explicit set of paths, Branicky et
al. [11] provided two approximate algorithms (Inner-Product
and Inclusion-Exclusion) that pruned large sets of candidate
paths or trajectories down to smaller subsets while maintain-
ing desirable characteristics in terms of overall reachability
and path length. Extended work in [12] focused discussion
on the survivability of the path from the collection of diverse
paths w.r.t. random placement of the robot into an obstacle
field in a static or dynamic space. In this paper, we instead
produce a topologically rich graph, which implicitly provides
critical point information, and our method generates paths
with different path class representations.

Recent work in [13] iteratively found diverse paths in the
Cspace for a simplified multiple path problem by reducing
the size of the robot (called inhibited regions). Although
their method provided an increased success rate for new
solutions, the oversimplification of the robot’s dimension
reduced the robustness of the approach. In this work, we
propose a topology-based solution to maximize the use of
non-degenerate critical points derived from discrete Morse
theory to compute diverse paths in the environment.

III. PRELIMINARIES

Definition 1: (Vietoris-Rips complex) Given a set X of
points in a Euclidean space E, the Vietoris-Rips complex
R.(X) is the abstract simplicial complex whose k-simplices
are the subsets of k£ + 1 points in X of diameter at most €.

In [14], a simplicial collapse, on constructed simplicial
complex, removed redundant information to provide a space
approximation of Cs,¢. as a pre-processing step. An exten-
sion in work [15], we applied discrete Morse theory to the
same simplicial complex to identify critical points on the
boundary of C,ps:. We make the following formal definitions.

Definition 2: Let D be the Euclidean distance function
that measures the distance between the point x € Cyyee and
the nearest point y on the closest obstacle O; € Cgpsy, that
is, D(x) = minyco, ||z — y|.

Definition 3: Let I'(y, o) be a density function where ¢ >
0 and y is the point on the obstacle. The function I' counts
all neighbors close to y in S within distance p.

Definition 4: Let f be a discrete Morse function on R(S)
restricted to the vertices of the Vietoris-Rips complex. One
option was defined in [15]. In our case, this is also the
restriction of a Morse function formally defined at any point
in Cspace by

f(x) = D(x) xT'(y, 0)- (D

Definition 5: (Critical points) The set of critical points is
defined as the set of non-degenerate points on the convex hull
of Copst When the given discrete Morse function f reaches
its extreme values, i.e. local minima or maxima.

Here, we denote critical points set as C. The derived
feasible critical points information near C,;s; Was obtained
within Cy,... by essentially shifting the critical points radially
at a distance o from C,ps; to within S, thus providing a set
of vertices in S C Cyree. The computation of ¢ value does
not affect the identification of feasible critical points, and,
thus, can be of any choice. Here, we calculate the value of
o as defined in [15].

Definition 6: (Feasible critical points) This set is defined
as all vertices in .S at a radial clearance of o from a critical
point of C,ps¢. In other words, it is the union of intersections
of vertices in S within the metric balls of radius o centered
at some critical point.

Let ¢; denote an element of the set C, ie. ¢; € C, and
let v; denote an element of the set .S, Vi, j > 0. We denote
the list of the feasible critical points within ¢ from ¢; by
F(c;) = {vo, ..., vq}, ¥q,0 < g < size(S).

To this end let us think of F' as a function from critical
points C' to the power set of S, that is the set of its subsets. If
all F(c;) are disjoint, which happens when all critical points
are at least 2o apart, then there is a well-defined function
F~1 from feasible critical points F(C) back to C. Even
when this is not true, we can think of F'~!(v) as the pre-
image of v under the multi-valued function F'. For each path
p, we then have F~!(p) which is the union Uvep F~1(v)
but can also be thought of as a sequence in C' because it
inherits the order from p.

Definition 7: (Path diversity) Given a set of paths P, two
paths p, and py, in P are diverse if p, # p,. They are called
coarsely diverse, or more precisely o-coarsely diverse if for
some time ¢ > 0 we have distance d(p,(t),ps(t)) > 0. Two
paths that are not coarsely diverse are called fellow travelers.



d is the Hausdorff distance function that measures the
distance between two paths at time ¢.

Proposition 1: Suppose the distance between any two
critical points is at least 3p. Then two paths p, and p; in P
are coarsely diverse if F~1(p,) # F~(pp).

Proof: The inequality means that for some ¢t > 0,
F~ pa(t)) # FHpo(t), so d(F~ (pa(t)), F~ (po(t)))
> 3p. Since d(F~Y(pa(t)),pa(t)) < o and similarly
d(F~Y(ps(t)),po(t)) < o, by the triangle inequality
d(pa(t), pp(t)) > o as needed. [ |

Proposition 2: The equation F~1(p,) = F~1(p,) defines
an equivalence relation on paths. All paths in the same
equivalence class are pairwise fellow travelers within the
bound 2p.

Proof: ~ The first statement is clear. For the sec-
ond notice that d(p,(t),ps(t)) < 2@ for all ¢t > 0 as
d(pa(t), F~*(p o(t)) < o, dlp () F~Y(py(t)) < o. and by
the assumption F~1(p,(t)) = F~1(py(t)) forall t > 0. m

We can conclude that to obtaln a collection of diverse
paths, or even better, coarsely diverse paths, it suffices to
makes sure the collection contains paths that map via F~!
to distinct sets of critical points.

Corollary 1: Suppose ¢ is in F~1(p,) but is not in
F~1(py). Then p, and p, are coarsely diverse.

IV. METHODOLOGY

In this algorithm, multiple paths map to a different collec-
tion of critical points incidents to them, as defined in Def.7.
Critical points represent the important intersection points on
the surface of Cgps, i.€., high or low curve points. These
critical points are non-degenerate, and, so, do not change
with change in the dimensionality of the robot, as C,ps are
rigid (non-deformable). The number of critical points for a
Copst in 2D space, like square, can be a small countable
value, but a polyhedral representation of C,ps; can have
enormous critical points due to its intricate structure in 3D
space. In such a framework, the possibility of having multiple
paths increases around a single C,ps; using its critical points
information. So, the pruning process removes only those
critical points close to the path within distance 2p, from
the identified critical points set. After pruning, there exists a
possibility that different paths map to the untouched critical
points of the same C,;s; in the future. Therefore, it also
validates the output paths to make sure that they pass along
different groups of C,ps¢ using proposition 1.

Algorithm 1 finds coarsely-diverse paths using identified
critical points information and pre-computed simplicial com-
plex from our previous work [14], [15], in lines 2-5. The
algorithm calls ConstructComplex method to construct sim-
plicial complex S (Def.1), on a verified Hausdorff distance
measure of the dense graph G, and performs a sequence of
simplicial collapse on S in the method TopologicalCollapse.
The discrete Morse function f on S identifies critical points
as the computed morse values in eq.(1) reaches its extrema,
in method IdentifyCritical Points. Finally, it executes GetFea-
siblePoints method to get vertices in S at p-clearance (Def.6)
from the critical point of C,ps¢. The resulting topology map

is a complete connected graph combined with necessary
topological information, i.e., vertices and edges, of the Cgy.c.
and the critical point information. The algorithm solves a
query from start to goal position and uncovers different paths
in the Cspqce, using this map. At each iteration (line 6), the
algorithm updates the graph while pruning the sets of feasible
critical points and constituting critical points of the already
found path such that no future path passes through the same
groupset.

As a result, when the local planner begins to build a
path for every updated graph complex S, it provides a path
incident on feasible critical points representing a different
collection of critical points compared to all other paths
previously obtained (line 8). The algorithm terminates when
all possible combinations of the paths for the environment
have been visited, and, no more query can be solved with
the available vertices in the S (line 18).

Algorithm 1 Planning coarsely diverse paths

Input: G: A dense graph comprising of vertices set V' and edges
set £ where G = {V, E'}, Q: query to be solved from start to
goal position, P: set of n-distinct paths, p: vector array of path
vertices.

:Letn=0, P+ {¢},p=0.

S < ConstructComplex(G); < Refer Def. 1

: TopologicalCollapse(S); < Refer [14]

C « IdentifyCritical Points(S); < Refer Def. 4, 5

F « GetFeasiblePoints(S,C); < Refer Def. 6

: while |C] > 0 do

if Q == false then

p = PlanPath(S)
if Q = true then
P=P|]p
for all vertex z € p do
C=C/F (z)
y=F"'(x)
S =5/F(y)
Q <« false
p.clear()
else
No more path exists. Assign C' <— ¢
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Once all the possible paths are found, the algorithm
performs a validation to accept only paths that map via
F~1 to distinct sets of critical points of coarsely-diverse path
classes, and lists all the C,ps; a particular path covers (lines
20-25). Finally, the algorithm outputs the total number of
paths, i.e., n, and the set of coarsely-diverse paths, i.e., P,
for a given Cypace-

V. ENVIRONMENT SETUP

The experiments were executed on a Dell Optiplex 7040
desktop machine running OpenSUSE operating system, and



the algorithms were implemented in C++ language.

We performed experiments in 3 different environments:

e 3D Cluttered environment: Obstacles are cluttered
around the room as shown in Figure 5a. The robot has
to traverse through these obstacles successfully to reach
its goal.

« House environment: A L-shaped robot is placed in a
house-like space with four different rooms, see Figure
5b. The obstacles, like, a box and two tables, are
placed randomly in the different rooms, and the robot
is required to pass through these obstacles to reach the
goal position.

o Kuka YouBot environment: An 8 DOF robot in an
environment with four different rooms, see Figure 5c.
This robot is a simulation replica of Kuka YouBot [16].
The robot moves through different rooms within narrow
passages and arrives at its destination where it performs
an action (grasps or puts an object down).

VI. EXPERIMENTAL RESULTS

This section provides a discussion on the results obtained
for Uniform [2], Gaussian [5] and Bridge-Test [6] planners
using our approach, and compared with the Voss method [3]
which used the SPARS2 algorithm [17]. RAPID [18] was
used as our collision detection method during the sampling,
connection and query stages. The experiment results were
averaged over the value of 10 runs for topological map
generation and 10 runs for diverse path planning for each
method in all environments.

A. Generating a Dense Topology Map

We generate a dense graph in all three environments using
the different planning methods. Table I shows the size of the
maps needed to meet the criteria defined in the definitions
and proposition as discussed in Section III.

TABLE I: Number of samples in the topology map

Environments | Uniform | Gaussian | Bridge-Test

3D Cluttered 5090 5918 6136
House 4985 6590 6504

Kuka YouBot 4908 6304 6601

Figure 2 show the number of edges formed on connecting
nodes in a topological map for all planning methods.

B. Number of Diverse Paths

Figure 3 gives the information about the number of diverse
paths returned after running Algorithm 1 on our different
environment scenarios. The distance between the pair of
paths was measured using the Hausdorff distance metric.
We observe that the Voss method returned fewer paths in
the 3D cluttered environment (3) compared to our approach
that returned 5 diverse paths for all 3 planners. In the House
environment, the Voss returned 8 paths while our method
returned 5 in all planners’ cases. We increase 100 units more
for the path threshold 7" to obtain 8 paths for all planners,
as shown in Figure 3b. Interestingly, the average path length
of our coarse paths in all planners’ cases was lower than
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Voss, as can be seen in Figure 4b. Finally, in the Kuka
YouBot environment, the Voss method failed to complete
and returned O paths while our approach returned 4 paths
for all 3 planners. Voss method was unsuccessful due to its
dependency on the SPARS?2 that is limited to handle only
planar and rigid body configurations (SE(2) and SE(3)), as
discussed in [17]. It can also be viewed, from the Figure 3
that as the number of paths increases, the distance between
paths decreases, and our method in all 3 planners maintained
good diversity between obtained paths.

C. Setting a Threshold

We set a threshold for returned paths based on the range
from the shortest diverse path length to a path of length T,
where T is the mean of all shortest path lengths returned. It
is due to the infinitely large number of diverse paths that can
be generated in any environment depending on the mapping
of paths to a plethora of critical point group combinations
(detailed discussion available in Section IV). Table II to IV
give information about our threshold and the diverse paths
returned.

TABLE II: Paths generated in 3D Cluttered environment

Diverse Paths | Path length threshold
Uniform topological map 5 300-400
Gaussian topological map 5 350-500
Bridge-Test topological map 5 500-850
Voss method 3 N/A

TABLE III: Paths generated in House environment

Diverse Paths | Path length threshold
Uniform topological map 5 522-600
Gaussian topological map 5 500-700
Bridge-Test topological map 5 500-650
Voss method 8 N/A

TABLE IV: Paths generated in Kuka YouBot environment

Diverse Paths | Path length threshold
Uniform topological map 4 1020-1500
Gaussian topological map 4 1050-2000
Bridge-Test topological map 4 1200-2500
Voss method 0 N/A
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D. Computation Time and Average Path Length

In Figure 4a, we can see that the time needed to build the
maps and generate the diverse paths differ in the environ-
ments. The Voss method uses less time in the 3D cluttered
environment than our method but was outperformed by the
Uniform topological planner in the House environment. No
result was recorded for Voss in the Kuka YouBot envi-
ronment since it failed to complete. However, comparing
the results of the topology methods in the Kuka YouBot
environment, we see that the Uniform topology method uses
less time than Bridge-Test and Gaussian and returns paths
with a smaller average length, as seen in Figure 4b. We
can postulate that Uniform planner worked best with our
topology approach due to the need to form a dense map in
the environment as quickly as possible, which is a strength
Uniform (Basic PRM) has over the other methods. Although
Gaussian and Bridge-Test provide samples closer to the C,ps¢,
the approaches require enormous samples to cover the entire
space, resulting in oversampling around the Cgps;. Thus,
Gaussian and Bridge-Test operate effectively in maze-like
situations when combined with our technique. A detailed
description of the properties of these different planners is
available in the related work section.

E. Critical Points Analysis and the Environment Topology

We show some interesting analyses to aid an appreciation
for the critical points and their role in identifying these
diverse paths. Figures 5a to 5c show examples of paths
returned in the 3D Cluttered, House, and Kuka YouBot
environments, showing the paths that map to a different set
of critical points within a close distance of p.

To better explain the relationship between the obstacles
and the critical points, we create a plot that depicts the
number of C,ps¢ in the environment v/s the diverse paths
that pass through the various groups of critical points of
these obstacles, as seen in Figure 5. Recall that we define
our diversity based on the distinct collections of critical
points each path constitutes. The number of obstacles in the
3D Cluttered environment is 23 with 170 identified critical
points, in the House environment is 3 obstacles with 95
identified critical points and in the Kuka YouBot environment
is 26 obstacles with 210 identified critical points. We also

previously proved in Proposition 1 that our critical points
determine the number of coarsely diverse paths we can
generate. In summary, we have successfully provided a
new methodology to extract coarsely diverse paths from the
topological information of the Cgpqcc and compared it with a
baseline method. Our approach has shown successfully that
diverse paths of shorter lengths can be possible.

VII. CONCLUSION AND FUTURE WORK

While path diversity is already a fruitful topic in robotics,
the work in this paper points to methods for the solution
of a more compelling problem of finding diverse paths that
represent diverse homotopy classes of paths. Suppose the
Cfree is two-dimensional and not contractible. In this case,
we can assume that there is at least one obstacle that is
homeomorphically a disk. Construction of non-homotopic
paths can be achieved by successively selecting feasible crit-
ical points as goalposts near critical points on the boundary
of that same disk. For example, suppose one obstacle in a
2D environment is a free-floating regular polygon (that is,
not touching a wall). We posit that alternate selection of
feasible critical points on diametrically opposite points of
the boundary circle will result in the generation of two paths
by Algorithm 1 that are not homotopic to each other, i.e.
touching on parallel tangential sides of the disk.

Looking to higher dimensions, the key property of the
disk in a 2D environment for this purpose of creating homo-
topically diverse paths is the fact that the core of the disk is
dimension 1, and so has codimension I in Cspqce. These ideas
generalize directly to obstacles in any dimension that are
co-dimension 1. The application of 1-dimensional persistent
homology from topological data analysis to higher dimension
robots and more complex obstacles will be presented in our
future work.
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