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Abstract— We present a new way of constructing sparse
roadmaps using point clouds that approximates and measures
the underlying topology of the Cfree space. The main advantage
of the constructed roadmap is its homotopy equivalence to the
η-offset of the Cfree space. Though only used to plan paths as a
regular roadmap in this work, because the roadmap preserves
the topology of the underlying sampled space, the information
can be used to plan paths beyond the simple connection of
graph vertices. To construct the roadmap, we first sample the
configuration space so that the resulting graph is a n-skeleton
graph that constructs a Vietoris-Rips (VR) complex. Then, we
perform a series of topological collapses to remove vertices
from the graph while still preserving its topological properties.
The resulting roadmaps are used to plan paths for different
robots and the experimental results show that the proposed
topological approach is faster and more feasible in complex
high-dimensional spaces.

I. INTRODUCTION

One of the fundamental challenge in robot motion plan-
ning is the description of the underlying configuration space
(Cspace). Motion planning can become trivial if the geometry
and topology of the Cspace is fully known. On one hand,
geometric information of arbitrary continuous space is hard
to describe using a finite amount of fundamental geometric
structures. On the other hand, the topological information
is hard to represent using tools that can also be used for
planning. Even the connectivity is hard to know in the con-
figuration space if either robot or the obstacles are complex.

In this work, we present a new roadmap construction ap-
proach where the resulting roadmaps preserve the topological
properties of the underlying space. In addition, the resulting
roadmap is sparse, yielding a memory-efficient representa-
tion. The first stage of the proposed approach is sampling
based, which generate samples to construct the Vietories-
Rips (VR) complex. In addition to being collision-free, the
samples also need to satisfy topological properties that we
will introduce in Section III-D, so that the constructed VR-
complex using these samples will be topological equivalent
to the underlying space. The samples of the VR complex is
then trimmed using topological collapses, result in a sparse
representation still captures the topological information of
the space while being sparse.

The proposed approach take advantage of the simplicity
of the sampling based approach, where the ease of gener-
ating samples is one of main attractions over the previous
geometry-based approaches. Modifications have been made
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to sampling-based approaches to preserve more information
of the underlying space. Algorithms such as PRM* and
RRT* [26] gained much attraction partially due to the
asymptotically optimal properties. However, to provide near-
optimal paths, many more samples are needed, and still the
roadmaps provide little information about the Cfree spaces.

Extracting topological properties of the configuration
space is not a new idea and many good results have been
presented in [14], [31] and [37]. One of the properties most
frequently sought is persistent homology, which describes
holes, i.e., obstacles, in the configuration space. The aim
of our work is not to identify objects and obstacles in
the configuration space, but to provide a tool to efficiently
describe properties of the Cfree space.

Our approach can briefly be described as follows, First,
generate and connect samples, ensuring they satisfy a set
of properties describing the convexity of the occupied sub-
space. These properties guarantee that the constructed VR-
complexes are homotopy equivalent to the underlying space.
Then, remove samples by performing topological collapses
while preserving the topological properties. The resulting
set of samples gives a roadmap representation of the Cfree

space. Finally, we use the roadmap to successfully build a
path trajectory with start and goal positions of the robot.
In addition, our roadmap is spare in the sense that no edge
needs to be stored. Since each vertex belongs to one or more
cliques, it is sufficient to only store the associated cliques to
fully represent the graph structure without storing any edge.

Fig. 1: Our approach

We admit that this is still a preliminary work on using
topological tools for motion planning. There are many po-
tential extensions that can be built upon the current results.
For example, even though our approach is not currently
incremental, the capability of preserving topological infor-
mation of the sampling space while being memory-efficient
can be beneficial for planning in complex spaces. Also,
existing approaches currently only finds a path and makes no
guarantee about the optimality of the path. Interestingly, we
can change/refine the sampling parameters used to generate
samples for VR-complex construction if a path that we know
exists is not returned by the current roadmap. Increasing
the sampling density in the space approximated by the VR-
complexes will eventually include this path. We perform
experiments in three different environments and compare



results with an optimal path planning algorithm; we show
improvement in time needed to generate path trajectories for
different robot scenarios.

II. RELATED WORK

Topological features are defined as the basic representation
of mathematical or geometrical space and refer to features
that supports continuity, connectivity, and convergence that is
established and maintained based on geometric coincidence.
These topological features can be extracted using various
mathematical concepts such as sheaf theory [13], persistent
homology [16], Vietoris-Rips (VR) complexes and landmark-
ing approach [36]. Past results have shown the benefits of
using topological features for improved behaviors or actions
of machines in areas like signal processing and cohomology
in [32] and, topological motion planning in [31], etc.

To understand the application of homotopy classes for 2D
and 3D space objects, Bhattacharya et al. in [6], [8], [9],
proposed the use of homology classes for 2D objects, as
homotopy classes cannot be practically applied to robot path
planning problems. Whereas, they proposed an application
of complex analysis and electromagnetism for path planning
through 3D objects with genus K (holes in the obstacles)
using the concept of homotopy classes. Later in a more
practical approach, Bhattacharya et al. in [7], used the
concept of persistent homology to find the homology class
of trajectories that are most persistent for a given probability
map. The work proposed persistent homology to solve the
fundamental problem of goal-directed path planning in an
uncertain environment represented by a probability map.

Research by Pokorny et. al. in [30], considered homotopy
classes of trajectories in general configuration space using
Delaunay-Cech Complex filtration and abstracted the global
information about trajectories using persistent homology. Our
work avoids the use of Delaunay-Cech Complex filtration
due to the difficulty in computing them for complex spaces,
i.e. the curse of dimensionality. Pokorny et. al. further
showed in [31], the application of a sampling-based approach
to topological motion planning that is fully data-driven in
nature. The work also uses the Delaunay-Cech method to
filter the data from the point-cloud dataset and improvises
Dijkstra’s algorithm to generate distance-vector terminology
for a source vertex.

The above-cited research has shown improvements in-
clined towards extracting a topological description of the
space and then performing approximate sampling with per-
formance guarantees. These methods, however, do not pro-
vide a measure of the approximation that has been per-
formed.

Sampling-based methods [15] are a state-of-the-art ap-
proach to solving motion planning problems. These methods
are known to be probabilistic complete because the proba-
bility of finding a solution if it exists tends towards 1 as
the number of samples generated increases. Sampling-based
methods are broadly classified into two main classes: graph-
based methods such as the Probabilistic Roadmap Method
(PRM) [27] and tree-based methods such as Expansive-Space

tree planner (ESTs) [24] and Rapidly-exploring Random
Tree (RRT) [28]. PRM variants include topologies such
as uniformly generating samples in the environment [27],
sampling near obstacles [2], [4], [12], [23], [35], sampling
with constraints placed on the robots [29] and planning with
uncertainty in the environment [25]. Other methods exist
that investigate the heterogeneous nature of the planning
environment using reinforcement learning [17]–[20], [34].

III. PRELIMINARIES

A. VR-complex and Čech-complex

Attali et. al., [5] have proven that VR complexes can
provide topologically correct approximations of shapes uti-
lizing the notion of distances between points in the metric
space. The research provides conditions under which the VR
complex of the point set at some scale reflects the homotopy
type of the shape for a finite point set that samples a shape.
Formally, the VR and Čech complex can be defined as
follows:

Given a set X of points in Euclidean space E, the VR
complex R(X) is the abstract simplicial complex whose k-
simplices are determined by subsets of k + 1 points in X with
a diameter that is at most ε, whereas the Čech-complex C(X)
is the abstract simplicial complex where a subset of k + 1
points in X determines a k-simplex if and only if they lie in
a ball of radius ε/2.

B. Simplicial collapses

An abstract simplicial complex K, i.e., a collection of
sets closed under the subset operation, is a generalization
of a graph and is useful in representing higher-than-pairwise
connectivity relationships. The elements of any set are called
vertices and the set itself is called a simplex. Topologi-
cal thinning (simplicial collapse) [10] is an operation that
shrinks simplicial complexes to homotopy-equivalent sub-
complexes. In this work, the simplicial collapse will be
used to reduce the complexity of maximal simplices through
vertex deletion down to a core simplex on maintaining the
topological structure of the configuration space.

C. Hausdorff Distance

The Hausdorff distance measures how far two subsets of
a metric space are from each other [1]. In this work, we
measure Hausdorff distance (ε) between set P – sampled
points, and set X – the Cfree space. The algorithm uses a
convex hull method to find the boundary points of set P to
compute the closest distance ε between sample points and
Cspace boundary. In figure 2, the blue line represents the
boundary of the Cspace and the green line as the boundary
of point cloud set P (calculated using convex hull). As
the sample points get denser in the Cspace, the value of ε
decreases and becomes constant above a certain sampling
density.



Fig. 2: Hausdorff distance for set P and X

D. From VR complex to sampled-space topology

Generally, a VR-complex does not preserve the topology
of the underlying sampled space. However, in [5], the authors
showed that a VR complex can be retracted to a Čech com-
plex to approximate the topology of the underlying sampled
space. Let us define the flag complex of a graph G, denoted
Flag G as the maximal simplicial complex whose 1-skeleton
is G. More precisely, this is the largest simplicial complex
sharing with the Čech complex the same 1-skeleton. In
addition, let us denote the VR-complex R(P, t) the abstract
simplicial complex whose k-simplices correspond to subsets
of k+ 1 points in P with a diameter that is at most 2t. The
Čech complex C(P, t) as the abstract simplicial complex
whose k-simplices correspond to subsets of k+1 points that
can be enclosed in a ball of radius t. Define α as an inert
value of P if Rad(δ) 6= α for all non-empty subsets δ ⊂ P .

Then, given any point set P ∈ Rn and any real numbers
α, β ≥ 0 with α ≤ β, define the flag complex of any graph
G satisfying R(P, α) ⊂ Flag G ⊂ R(P, β) an (α, β)-quasi
Rips complex of P . Also, let vn =

√
2n
n+1 . We can have the

following property, which is Theorem 7 from [5].

Theorem 1. Let P ⊂ Rn be a finite set of points. For any
real numbers β ≥ α ≥ 0 such that α is an inert value of
P and cP (vnβ) < 2α − vnβ, there exists a sequence of
collapses from any (α, β)-almost Rips complex of P to the
Cech complex C(P, α).

The measure of convexity defects of X at a given scale is
determined by function cp as given below.

cp(t) = dH(Centers(X, t)|X) (1)

Further, the graph can be shown to be homotopy equivalent
to η-offset of the sampling space X , from Theorem 10 in [5].

Theorem 2. Let ε, α and β be three non-negative real
numbers such that α ≤ β and η = 2α − vnβ − 2ε > 0.
Let P be a finite set of points whose Hausdorff distance
to a compact subset X is ε or less. Then, any (α, β)-quasi
Rips complex of P is homotopy equivalent to the η-offset of
X whenever α is an inert value of P and hX(vnβ + ε) <
2α− vnβ − 2ε.

where Hull(X) denotes the convex hull of X , and

hX(t) = dH(Hull(X, t)|X) (2)

Hull(X, t) =
⋃

∅6=δ⊂X
Rad(δ)<t

Hull(δ) (3)

From the theorem, we can derive that in order to use
a graph-like structure to approximate the homotopy of the
sampling space, we need to first have sufficiently dense
samples, so that P is no more than ε away from the set X
based on Hausdorff distance. Here, X is the set we would
like to approximate using samples in P . Recall, Hausdorff
distance dH(X,Y ) is

dH(X,Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

d(y,X) = inf
x∈X

d(y, x)

dH(Y |X) = sup
y∈Y

d(y,X)

Therefore, if the samples P satisfy the above properties,
we can construct a graph based on P and use the relations
to approximate the underlying homotopy of X , even when
the number of samples is small. Compared to the sampling-
based motion planning approaches, where the connectivity is
guaranteed when the number of samples reaches infinity, the
proposed method yields a bound on the number of samples.
On the other hand, given a set of samples P , we can also
compute the relevant parameters to derive how much of the
sample space X has the samples covered, where X can be
Cfree in the case of motion planning.

IV. PROPOSED ROADMAP CONSTRUCTION

To construct the proposed roadmaps that approximates
the topology of the underlying configuration space, we
first densely place samples that will satisfy the parameters
presented in Theorem 2. We then use the samples to con-
struct VR complex, which approximates the homotopy of
the underlying Cfree space. Finally, we perform topological
collapses to remove the unnecessary samples from the VR-
complexes to output a sparse roadmap.

The sampling process is similar to that of a PRM algo-
rithm, with additional requirements, mainly the conditions
mentioned in Theorem 1 and 2. During the sampling process,
the Hausdorff distances are computed between the samples
and the set X, which is the Cfree space in our application.
In [5], the authors stated that if the Hausdorff distance is
smaller than the parameters measuring the space, the result-
ing point cloud (sampled points) approximates the topology
of the space. Taking this into consideration (Theorem 2), we
validate the expression 2ε < 2α − vnβ, where β = α in
our experiments. On verifying the sampling condition in the
workspace, the output is a densely sampled Cspace graph G.

A. Collapsing a VR-complex

The convex hull of any nonempty subset of the n + 1
points that define an n-simplex is called a face of the
simplex (complex). A maximal face (facet) is any simplex



in a complex that is not a face of any larger simplex. Given
τ, δ ∈ K, if τ ⊂ δ, in particular dim τ < dim δ, and δ
is a maximal face of K and no other maximal face of K
contains τ , then τ is called a free face. A simplicial collapse
of K is the removal of all simplices γ such that τ ⊆ γ ⊂ δ.
The work in [36] and [37] explains the equivalence between
maximal faces in abstract simplicial complexes and maximal
cliques in graph theory.

Given a simplicial complex K of dimension n ≥ d, a d-
skeleton of K is the subcomplex of K consisting of all the
faces of K that have dimension at most d. Then, a graph
can be used to represent the 1-skeleton of K, and let us
refer to the graph as the underlying graph and denote the
graph as GK . For simplicity in this work, we will refer to
the 0-skeleton of K as vertices of GK , and 1-skeleton of K
as edges of GK . Then, we can derive the following results.

Lemma 1. Given a complex K and its underlying graph
GK , let δ be a maximal face of K, if a vertex v of GK is a
subset of δ (v ⊂ δ) and no other maximal face of K contains
v, then there exist a sequence of simplicial collapses on K
that can remove vertex v.

Proof: Let there exist a sequence of free faces
s0, s1, s2, . . . , sm, so that s0 ⊂ s1 ⊂ s2 ⊂ . . . ⊂ sm ⊂ δ and
s0 = v. Let s1 be one of the edges on GK with v being one
endpoint of the edge, let s2 be the tetrahedron containing s1,
etc. Because each si is a free face, a simplicial collapse can
remove it. Then, let the sequence of collapse start from sm,
and move towards s0. Each collapse of si will not change
the fact that si still is a free face of δ. Therefore, v can be
removed.

Then, we can extend the results to get the following
theorem.

Theorem 3. Given a complex K and its underlying graph
GK , let δ be a maximal face of K, and let Vs be the set of all
the vertices v where v is a subset of δ and no other maximal
face of K contains v. Then, after removing all vertices in
Vs, there are no free faces on δ.

Proof: Let us assume that after removing all vertices
in Vs, there still exists at least one free face τ ⊂ δ. If τ is of
dimension 0, then it is a vertex that only belongs to δ, so it
must have been part of Vs, so τ can not be of dimension 1
or above. If τ is of dimension 1, i.e. an edge on GK , then at
least one vertex of the edge will belong only to δ otherwise
the edge cannot be a free face. Therefore, removing all
vertices of Vs will remove this edge. Inductively, we can
extend this to higher dimensions. Therefore, there cannot be
any free face left after removing all vertices in Vs.

B. Removing topologically unimportant vertices

Similar to the work in [36], Algorithm 1 first constructs
VR-complex using maximal clique technique for faster com-
putation. After the cliques are computed, we transform the
representation of the cliques to binary. Each node in the
graph was represented in binary form based on the clique
in which it belongs. Given a graph with n nodes, the binary

representation of a clique (or a sub-graph) is the binary
string of length n in which the ith character is 1 if the
clique (sub-graph) contains the ith node and 0 otherwise.
We then perform bit-wise and operation to find potential
simplicial collapses using results from Lemma 1. We remove
the vertices labeled as 1 after the operations among cliques.

The algorithm returns a sampled graph Gnew with vertices
of non-colliding regions of Cspace after completing topolog-
ical collapse on the graph. This resulting graph gives an
approximate topological shape representation of the objects
and available free region in the Cspace.

Algorithm 1 Graph-Collapse(G)

Input: G: sampled graph from the point cloud; M: maximal
clique, B: set of binary representation for each clique;
T: set of vertices after topological collapse.

1: for all nodes in graph G do
2: compute maximal clique M.
3: while M is not empty do
4: for each clique in M do
5: if node in clique then
6: Set binary value ’1’ for node in B
7: else
8: Set binary value ’0’ for node in B
9: if B is not empty then

10: T = B ⊕ B
11: for each node in T do
12: project node in graph Gnew.
13: return Gnew

V. EXPERIMENTS AND RESULTS

A. Experimental Setup
All experiments were executed on a Dell Optiplex 7040

desktop machine running OpenSUSE operating system and
were implemented in C++. We performed experiments in
three different environments as shown in Figure 3 and gener-
ated samples ranging from 100 to 10,000. The environments
are taken from the Parasol Lab benchmarks at Texas A & M
University [3].
• ZigZag environment: 2D environment with structured

obstacles placed randomly as shown in Figure 3a and
3b. We tested two configurations, one with a 2 DOF
robot and one with a 4 DOF robot.

• Heterogeneous 3D: 3D maze environment with walls
and narrow passages between the walls. A robot with a
toroidal shape has to pass through maze-like tunnels to
reach the goal as shown in Figure 3c.

• Helico: A city representation with tall buildings and
wires between buildings (Figure 3d). The robot is a rigid
body representation of a helicopter and can change its
vertical position based on the goal position.

B. VR Complex computation
We performed preliminary experiments with two libraries

that generate VR-complexes. We compared results to deter-
mine which library is most suited for our approach.



(a) 2 DOF ZigZag (snake-
like)

(b) 4 DOF ZigZag (snake-
like)

(c) Heterogeneous 3D (toroidal
plus)

(d) Helico (helicopter)

Fig. 3: Environments Studied

We used the VR-complex package of GUDHI library [11]
to construct simplicial complexes. The time complexity of
the algorithm is O(v2d + m2d), where d is the dimension
of the complex, v is the number of vertices, and m is the
number of maximal simplices in the graph.

The Quick-cliques library [21], [22] generates maximal
cliques using a modified Bron-Kerbosch algorithm by Tomita
et. al. [33]. We used a hybrid algorithm that applies a VR-
complex approach to construct simplices. The time com-
plexity of the algorithm is O(3d/3nd) with n vertices and
degeneracy d. Since VR-complexes are also known as clique
complexes, the algorithm tries to generate maximal cliques
as a result.

Table I and II compares results for GUDHI and Quick-
cliques library in 2 DOF ZigZag environment with and
without obstacles present. One can see that Quick-cliques
library computes maximal cliques faster than the GUDHI
library as the number of nodes increases hence we chose to
use the Quick-cliques library for the remaining cases.

TABLE I: Constructing Rips complex in a 2 DOF ZigZag
environment without obstacles

Library Number of Nodes Cliques Time taken (sec)
GUDHI 100 210 0.01

Quick-Cliques 100 51 0.042274
GUDHI 10000 33552695 289.31

Quick-Cliques 10000 892190 0.014901

TABLE II: Constructing Rips complex in 2 DOF ZigZag
environment with obstacles

Library Number of Nodes Cliques Time taken (sec)
GUDHI 100 268 0.02

Quick-Cliques 100 1378 0.042939
GUDHI 10000 81463172 675.6

Quick-Cliques 10000 1443062 50.072735

C. Sampling at different densities

We performed two sets of experiments on our three
testbeds, all with and without obstacles in the environment.
We first performed experiments for the sampling conditions
of P based on the 2ε < 2α−vnβ, where β = α preconditions
as previously discussed in Section IV. Another condition

as defined in [5], states that as the sampled space becomes
denser, the Hausdorff distance (ε) reduces or approaches a
constant value. Secondly, we constructed a (space) graph
G from a point cloud that densely sampled the space and
then performed topology collapse. Our results show that
after a topology collapse, the coverage of Cspace is not
compromised.

1) Sampling conditions: In Figure 3 and 4, the Hausdorff
distance (ε) decreases in an empty environment as well as in
an environment with obstacles. The trend as shown in Figure
4d clearly satisfy the conditions stated in [5] which state ”the
value of ε will become constant above the radius of the circle
covering the Cspace”. The purple and blue bars (2ε)(E) and
the green and yellow bars (2α− vnβ) (A) in the histogram
represented in Figure 4a to 4d show that in all cases both
the above conditions are satisfied.

In the particular case of the Helico environment as seen
in Figure 4d, the ε value is initially low and subsequently
increases as the graph becomes denser before leveling off
and then becoming constant. The position of a robot in
this environment is at the corner of the Cspace, so when
samples are generated initially, they are generated only near
the boundary of the Cspace and hence ε value is low until the
number of samples increases in the environment to produce
better coverage. The values of ε converges to constant as
it reaches 10000 sampled nodes in all the environments as
shown in Figure 5.

2) Topology Collapse: Table III contains results for topol-
ogy collapse experiments that utilize theorems and algo-
rithms presented in Section IV-A and IV-B. The results
substantiate the ability to delete vertices thus confirming
Lemma 1. We show a 40 to 90% reduction across all the
environments which indicate that our method can delete
vertices while retaining the topological information of the
space.

Figure 6 gives a pictorial representation for one studied
environment after the graph topology collapse. The sub fig-
ures show the process from performing a topology collapse
and getting a path for a simple robot. Figure 6 (i) a Cspace
with obstacles, (ii) a 1-skeleton with five or few samples
in Cfree, (iii) a 0-skeleton densely sampled graph, (iv) the
structure that remains after the topological collapse, and (v)
a successful path through the Cspace.
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(a) 2 DOF ZigZag
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(b) 4 DOF ZigZag
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(c) Heterogeneous 3D
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(d) Helico

Fig. 4: ε and α trends in obstacle and free environments

(a) Cfree environment (b) Cobst environment

Fig. 5: Convergence of Hausdorff distance in obstacle and free environments

Environment Nodes Before Nodes After- Free % Reduction Nodes After- Obstacle % Reduction
2DOF Zig Zag 10,000 5081 49.2 4826 51.7
4DOf Zig Zag 10,000 637 93.6 896 91.1

Heterogeneous 3D 10,000 4968 50.3 5061 49.3
Helico 10,000 5041 49.6 5023 49.8

TABLE III: Results after the Topology Collapse in the Free and Obstacle Environment

Fig. 6: Phases of Topological path planning

In addition, because the samples we generated were used
to construct a VR-complex, which consists of locally com-
plete subgraphs (cliques), we can skip the storage of all
the edges and store only which cliques a vertex belongs to.
Therefore, the storage needed to store the entire resulting
roadmap scales linearly with the number of samples left after

the collapse, which is comparable to k-nearest neighbor PRM
but provides much richer topological information [36].

D. Planning with homology equivalent samples

Table IV and V compare paths generated by PRM*
[26] using (i) the original point cloud and (ii) the vertices
of the VR-complex after topological collapse in different
environments in terms of total path cost and time needed
to build a path. We report time to connect and query the
environment alone to allow for fairness in our comparisons.
The results show an order of magnitude improvement in all
environments studied.

VI. DISCUSSION AND FUTURE WORK

The work presented derives from studies that show the
circumstances under which Vietoris-Rips Complex and the
Čech Complex have homotopy equivalence beneficial to im-
proving approximate sampling algorithms and gives a much-
needed measure of this approximation. The reconstructed
Cspace has proven to be helpful in path planning while
reducing the computation time and memory.

The approach can have application in a dynamic real-
world environment where the path planning of a robot can
be performed with minimum computation time on smaller
portions of the environment that a robot can view at the



Cfree Environment Our Approach PRM∗ Cobst Environment Our Approach PRM∗

2DOF ZigZag 62.1342 229.922 2DOF ZigZag 53.0861 129.904
4DOf ZigZag 64.7357 11146.4 4DOf ZigZag 2.52541 24089.9

Heterogeneous 3D 62.6602 DNF Heterogeneous 3D DNF DNF
Helico 55.8919 DNF Helico 58.4688 82967

TABLE IV: Path planning time (in seconds) in the Free and Obstacle Environments

Cfree Environment Our Approach PRM∗ Cobst Environment Our Approach PRM∗

2DOF ZigZag 1003 1438 2DOF ZigZag 827 1553
4DOf ZigZag 916 1324 4DOf ZigZag 893 1258

Heterogeneous 3D 3714 DNF Heterogeneous 3D DNF DNF
Helico 1806 DNF Helico 1338 2698

TABLE V: Path planning cost in the Free and Obstacle Environments

time of traversal and combine together to get a better
understanding of the actual environment.

In future work, we will further enhance the approach to
identify critical points in Cspace, i.e. sample points closest
to the Cspace curvature, and using the properties of Vietoris-
Rips, perform path planning on smaller sized graphs.
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